
gc3pie Documentation
Release 2.6.8

Sergio Maffioletti, Antonio Messina, Mark Monroe, Riccardo Murri, Mike Packard

Aug 10, 2021

Contents

1 Introduction 1

2 Table of Contents 3
2.1 User Documentation . 3
2.2 Programmer Documentation . 67
2.3 Contributors documentation . 191
2.4 Publications . 196
2.5 List of contributors to GC3Pie . 198
2.6 Glossary . 199

3 Indices and tables 201

Python Module Index 203

Index 205

i

ii

CHAPTER 1

Introduction

GC3Pie is a Python package for running large job campaigns on diverse batch-oriented execution environments (for
instance: a Sun/Oracle/Open Grid Engine cluster, or the Swiss National Distributed Computing Infrastructure SM-
SCG). It also provides facilities for implementing command-line driver scripts, in the form of Python object classes
whose behavior can be customized by overriding specified object methods.

GC3Pie documentation is divided in three sections:

• User Documentation: info on how to install, configure and run GC3Pie applications.

• Programmer Documentation: info for programmers who want to use the GC3Pie libraries to write their own
scripts and applications.

• Contributors documentation: detailed information on how to contribute to GC3Pie and get your code included
in the main library.

1

http://gridengine.org/blog/2011/11/23/what-now/
http://www.smscg.ch/
http://www.smscg.ch/

gc3pie Documentation, Release 2.6.8

2 Chapter 1. Introduction

CHAPTER 2

Table of Contents

2.1 User Documentation

This section describes how to install and configure GC3Pie, and how to run The GC3Apps software and The GC3Utils
software.

2.1.1 Table of Contents

Installation of GC3Pie

Quick start

We provide an installation script which automatically tries to install GC3pie in your home directory. The quick
installation procedure has only been tested on variants of the GNU/Linux operating system; however, the script should
work on MacOSX as well, provided you follow the preparation steps outlined in the “MacOSX installation” section
below.

To install GC3Pie: (1) download the installation script into a file install.py, then (2) type this at your terminal prompt:

python install.py

The above command creates a directory $HOME/gc3pie and installs the latest release of GC3Pie and all its depen-
dencies into it.

Alternatively, you can also perform both steps at the terminal prompt:

use this if the `wget` command is installed
wget -O install.py https://raw.githubusercontent.com/uzh/gc3pie/master/install.py
python install.py

use this if the `curl` command is installed instead
curl -O https://raw.githubusercontent.com/uzh/gc3pie/master/install.py
python install.py

3

install.html
configuration.html
https://raw.githubusercontent.com/uzh/gc3pie/master/install.py

gc3pie Documentation, Release 2.6.8

Choose either one of the two methods above, depending on whether wget or curl is installed on your system (Linux
systems normally have wget; MacOSX normally uses curl).

In case you have trouble running the installation script, please send an email to gc3pie@googlegroups.com or post a
message on the web forum https://groups.google.com/forum/#!forum/gc3pie. Include the full output of the script in
your email, in order to help us to identify the problem.

Now you can check your GC3Pie installation; follow the on-screen instructions to activate the virtual environment.
Then, just type the command:

gc3utils --help

and you should see the following output appear on your screen:

Usage: gc3utils COMMAND [options]

Command `gc3utils` is a unified front-end to computing resources.
You can get more help on a specific sub-command by typing::

gc3utils COMMAND --help
where command is one of these:

clean
cloud
get
info
kill
resub
select
servers
stat
tail

If you get some errors, do not despair! The GC3Pie users mailing-list is there to help you :-) (You can also post to the
same forum using a web interface at https://groups.google.com/forum/#!forum/gc3pie.)

With the default configuration file, GC3Pie is set up to only run jobs on the computer where it is installed. To run
jobs on remote resources, you need to edit the configuration file; the Configuration file documentation provides an
explanation of the syntax.

Non-standard installation options

The installation script accept a few options that select alternatives to the standard behavior. In order to use these
options, you have to:

1. download the installation script into a file named install.py:

wget https://raw.githubusercontent.com/uzh/gc3pie/master/install.py

2. run the command:

python install.py [options]

replacing the string [options] with the actual options you want to pass to the script. Also, the python
command should be the Python executable that you want to use to run GC3Pie applications.

The accepted options are as follows:

--feature LIST

Install optional features (comma-separated list). Currently defined features are:

4 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com
https://groups.google.com/forum/#!forum/gc3pie
mailto:gc3pie@googlegroups.com
https://groups.google.com/forum/#!forum/gc3pie
http://gc3pie.readthedocs.io/en/latest/users/configuration.html

gc3pie Documentation, Release 2.6.8

• openstack: support running jobs in VMs on OpenStack clouds

• ec2: support running jobs in VMs on OpenStack clouds

• optimizer: install math libraries needed by the optimizer library

For instance, to install all features use -a openstack,ec2,optimizer. To install no
optional feature, use -a none.

By default, all cloud-related features are installed.

-d DIRECTORY

Install GC3Pie in location DIRECTORY instead of $HOME/gc3pie

--overwrite

Overwrite the destination directory if it already exists. Default behavior is to abort installation.

--develop

Instead of installing the latest release of GC3Pie, it will install the master branch from the
GitHub repository.

--yes

Run non-interactively, and assume a “yes” reply to every question.

--no-gc3apps

Do not install any of the GC3Apps, e.g., gcodeml, grosetta and ggamess.

Manual installation

In case you can’t or don’t want to use the automatic installation script, the following instructions will guide you
through all the steps needed to manually install GC3Pie on your computer.

These instructions show how to install GC3Pie from the GC3 source repository into a separate python environment
(called virtualenv). Installation into a virtualenv has two distinct advantages:

• All code is confined in a single directory, and can thus be easily replaced/removed.

• Better dependency handling: additional Python packages that GC3Pie depends upon can be installed even if
they conflict with system-level packages.

0. Install software prerequisites:

• On Debian/Ubuntu, install these system packages:

apt-get install gcc g++ git python-dev libffi-dev libssl-dev make

• On CentOS5, install these packages:

yum install git python-devel gcc gcc-c++ libffi-devel make openssl-devel

• On other Linux distributions, you will need to install:

– the git command (from the Git VCS);

– Python development headers and libraries; (for installing extension libraries written in C/C++)

– a C/C++ compiler (this is usually installed by default);

– include files for the FFI and OpenSSL libraries.

2.1. User Documentation 5

http://pypi.python.org/pypi/virtualenv/1.7
https://git-scm.org/

gc3pie Documentation, Release 2.6.8

1. If virtualenv is not already installed on your system, get the Python package and install it:

wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.7.tar.gz
tar -xzf virtualenv-1.7.tar.gz && rm virtualenv-1.7.tar.gz
cd virtualenv-1.7/

If you are installing as root, the following command is all you need:

python setup.py install

If instead you are installing as a normal, unprivileged user, things get more complicated:

export PYTHONPATH=$HOME/lib64/python:$HOME/lib/python:$PYTHONPATH
export PATH=$PATH:$HOME/bin
mkdir -p $HOME/lib/python
python setup.py install --home $HOME

You will also have to add the two export lines above to the:

• $HOME/.bashrc file, if using the bash shell or to the

• $HOME/.cshrc file, if using the tcsh shell.

In any case, once virtualenv has been installed, you can exit its directory and remove it:

cd ..
rm -rf virtualenv-1.7

2. Create a virtualenv to host the GC3Pie installation, and cd into it:

virtualenv --system-site-packages $HOME/gc3pie
cd $HOME/gc3pie/
source bin/activate

In this step and in the following ones, the directory $HOME/gc3pie is going to be the installation folder of
GC3Pie. You can change this to another directory path; any directory that’s writable by your Linux account will
be OK.

If you are installing system-wide as root, we suggest you install GC3Pie into /opt/gc3pie instead.

3. Check-out the gc3pie files in a src/ directory:

git clone https://github.com/uzh/gc3pie.git src

4. Install the gc3pie in “develop” mode, so any modification pulled from GitHub is immediately reflected in the
running environment:

cd src/
env CC=gcc ./setup.py develop
cd .. # back into the `gc3pie` directory

This will place all the GC3Pie command into the gc3pie/bin/ directory.

5. GC3Pie comes with driver scripts to run and manage large families of jobs from a few selected applications.
These scripts are not installed by default because not everyone needs them.

Run the following commands to install the driver scripts for the applications you need:

6 Chapter 2. Table of Contents

http://pypi.python.org/pypi/virtualenv/1.7

gc3pie Documentation, Release 2.6.8

if you are insterested in GAMESS, do the following
ln -s '../src/gc3apps/gamess/ggamess.py' bin/ggamess

if you are insterested in Rosetta, do the following
ln -s '../src/gc3apps/rosetta/gdocking.py' bin/gdocking
ln -s '../src/gc3apps/rosetta/grosetta.py' bin/grosetta

if you are insterested in Codeml, do the following
ln -s '../src/gc3apps/codeml/gcodeml.py' bin/gcodeml

6. Now you can check your GC3Pie installation; just type the command:

gc3utils --help

and you should see the following output appear on your screen:

Usage: gc3utils COMMAND [options]

Command `gc3utils` is a unified front-end to computing resources.
You can get more help on a specific sub-command by typing::
gc3utils COMMAND --help

where command is one of these:
clean
cloud
get
info
kill
resub
select
servers
stat
tail

If you get some errors, do not despair! The GC3Pie users mailing-list <gc3pie@googlegroups.com> is there to
help you :-) (You can also post to the same forum using the web interface at https://groups.google.com/forum/
#!forum/gc3pie.)

7. With the default configuration file, GC3Pie is set up to only run jobs on the computer where it is installed. To run
jobs on remote resources, you need to edit the configuration file; the configuration file documentation provides
an explanation of the syntax.

Upgrade

If you used the installation script, the fastest way to upgrade is just to reinstall:

0. De-activate the current GC3Pie virtual environment:

deactivate

(If you get an error “command not found”, do not worry and proceed on to the next step; in case of other errors
please stop here and report to the GC3Pie users mailing-list <mailto:gc3pie.googlegroups.com>.)

1. Move the $HOME/gc3pie directory to another location, e.g.:

mv $HOME/gc3pie $HOME/gc3pie.OLD

2. Reinstall GC3Pie using the quick-install script (top of this page).

2.1. User Documentation 7

https://groups.google.com/forum/#!forum/gc3pie
https://groups.google.com/forum/#!forum/gc3pie
http://gc3pie.readthedocs.io/en/latest/users/configuration.html

gc3pie Documentation, Release 2.6.8

3. Once you have verified that your new installation is working, you can remove the $HOME/gc3pie.OLD
directory.

If instead you installed GC3Pie using the “manual installation” instructions, then the following steps will update
GC3Pie to the latest version in the code repository:

1. cd to the directory containing the GC3Pie virtualenv; assuming it is named gc3pie as in the above installation
instructions, you can issue the commands:

cd $HOME/gc3pie # use '/opt/gc3pie' if root

2. Activate the virtualenv:

source bin/activate

3. Upgrade the gc3pie source and run the setup.py script again:

cd src
svn up
env CC=gcc ./setup.py develop

Note: A major restructuring of the SVN repository took place in r1124 to r1126 (Feb. 15, 2011); if your sources are
older than SVN r1124, these upgrade instructions will not work, and you must reinstall completely. You can check
what version the SVN sources are, by running the svn info command in the src directory: watch out for the Revision:
line.

MacOSX Installation

Installation on MacOSX machines is possible, however there are still a few issues. If you need MacOSX support,
please let us know on the GC3Pie users mailing-list <mailto:gc3pie@googlegroups.com> or by posting a message
using the web interface at https://groups.google.com/forum/#!forum/gc3pie.

1) Standard usage of the installation script (i.e., with no options) works, but you have to use curl since wget is not
installed by default.

2) In order to install GC3Pie you will need to install XCode and, in some of the MacOSX versions, also the
Command Line Tools for XCode

3) Options can only be given in the abbreviated one-letter form (e.g., -d); the long form (e.g., --directory)
will not work.

4) The shellcmd backend of GC3Pie depends on the GNU time command, which is not installed on MacOSX by
default. This means that with a standard MacOSX installation the shellcmd resource will not work. However:

• other resources, like pbs via ssh transport, will work.

• you can install the GNU time command either via MacPorts, Fink, Homebrew or from this url. After
installing it you don’t need to update your PATH environment variable, it’s enough to set the time_cmd
option in your GC3Pie configuration file.

HTML Documentation

HTML documentation for the GC3Libs programming interface can be read online at:

http://gc3pie.readthedocs.io/

If you installed GC3Pie manually, or if you installed it using the install.py script with the --develop option,
you can also access a local copy of the documentation from the sources:

8 Chapter 2. Table of Contents

https://groups.google.com/forum/#!forum/gc3pie
https://developer.apple.com/xcode/
http://www.macports.org/
http://sourceforge.net/projects/fink/
http://mxcl.github.com/homebrew/
http://mirror.switch.ch/ftp/mirror/gnu/time/
http://gc3pie.readthedocs.io/

gc3pie Documentation, Release 2.6.8

cd $HOME/gc3pie # or wherever the gc3pie virtualenv is installed
cd src/docs
make html

Note that you need the Python package Sphinx in order to build the documentation locally.

Configuration File

Location

All commands in The GC3Apps software and The GC3Utils software read a few configuration files at startup:

• system-wide one located at /etc/gc3/gc3pie.conf,

• a virtual-environment-wide configuration located at $VIRTUAL_ENV/etc/gc3/gc3pie.conf, and

• a user-private one at $HOME/.gc3/gc3pie.conf, or, alternately, the file in the location pointed to by the
environmental variable GC3PIE_CONF.

All these files are optional, but at least one of them must exist.

All files use the same format. The system-wide one is read first, so that users can override the system-level configura-
tion in their private file. Configuration data from corresponding sections in the configuration files is merged; the value
in files read later overrides the one from the earler-read configuration.

If you try to start any GC3Utils command without having a configuration file, a sample one will be copied to the user-
private location ~/.gc3/gc3pie.conf and an error message will be displayed, directing you to edit the sample
file before retrying.

Configuration file format

The GC3Pie configuration file follows the format understood by Python ConfigParser; see http://docs.python.org/
library/configparser.html for reference.

Here is an example of what the configuration file looks like:

[auth/none]
type=none

[resource/localhost]
change the following to `enabled=no` to quickly disable
enabled=yes
type=shellcmd
transport=local
auth=none
max_cores=2
max_cores_per_job=2
...

You can see that:

• The GC3Pie configuration file consists of several configuration sections. Each configuration section starts with
a keyword in square brackets and continues until the start or the next section or the end of the file (whichever
happens first).

2.1. User Documentation 9

http://sphinx.pocoo.org/
http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html

gc3pie Documentation, Release 2.6.8

• A section’s body consists of a series of word=value assignments (we call these configuration items), each on
a line by its own. The word before the = sign is called the configuration key, and the value given to it is the
configuration value.

• Lines starting with the # character are comments: the line is meant for human readers and is completely ignored
by GC3Pie.

The following sections are used by the GC3Apps/GC3Utils programs:

• [DEFAULT] – this is for global settings.

• [auth/name] – these are for settings related to identity/authentication (identifying yourself to clusters &
grids).

• [resource/name] – these are for settings related to a specific computing resource (cluster, grid, etc.)

Sections with other names are allowed but will be ignored.

The DEFAULT section

The [DEFAULT] section is optional.

Values defined in the [DEFAULT] section can be used to insert values in other sections, using the %(name)s syntax.
See documentation of the Python SafeConfigParser object at http://docs.python.org/library/configparser.html for an
example.

auth sections

There can be more than one [auth] section.

Each authentication section must begin with a line of the form:

[auth/name]

where the name portion is any alphanumeric string.

You can have as many [auth/name] sections as you want; any name is allowed provided it’s composed only of
letters, numbers and the underscore character _. (Examples of valid names are: [auth/cloud], [auth/ssh1],
and [auth/user_name])

This allows you to define different auth methods for different resources. Each [resource/name] section can
reference one (and one only) authentication section, but the same [auth/name] section can be used by more than
one [resource/name] section.

Authentication types

Each auth section must specify a type setting.

type defines the authentication type that will be used to access a resource. There are three supported authentication
types:

type=... Use this for . . .
ec2 EC2-compatible cloud resources
none Resources that need no authentication
ssh Resources that will be accessed by opening an SSH connection to the front-end node of a cluster

10 Chapter 2. Table of Contents

http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html

gc3pie Documentation, Release 2.6.8

none-type authentication

This is for resources that actually need no authentication (transport=local) but still need to reference an
[auth/*] section for syntactical reasons.

GC3Pie automatically inserts in every configuration file a section [auth/none], which you can reference in re-
source sections with the line auth=none.

Because of the automatically-generated [auth/none], there is hardly ever a reason to explicitly write such a section
(doing so is not an error, though):

[auth/none]
type=none

ssh-type authentication

For the ssh-type auth, the following keys must be provided:

• type: must be ssh

• username: must be the username to log in as on the remote machine

The following configuration keys are instead optional:

• port: TCP port number where the SSH server is listening. The default value 22 is fine for almost all cases;
change it only if you know what you are doing.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from (default: $HOME/ssh/
config:file:. The format of the SSH configuration file is documented in the ssh_config(5) man page.

• timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be estab-
lished.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

Example. The following configuration sections are used to set up two different accounts that GC3Pie programs can
use. Which account should be used on which computational resource is defined in the resource sections (see below).

[auth/ssh1]
type = ssh
username = murri # your username here

[auth/ssh2] # I use a different account name on some resources
type = ssh
username = rmurri
read additional options from this SSH config file
ssh_config = ~/.ssh/alt-config

ec2-type authentication

For the ec2-type auth, the following keys can be provided:

2.1. User Documentation 11

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.8

• ec2_access_key: Your personal access key to authenticate against the specific cloud endpoint. If not found,
the value of the environment variable EC2_ACCESS_KEY will be used; if the environment variable is unset,
GC3Pie will raise a ConfigurationError.

• ec2_secret_key: Your personal secret key associated with the above ec2_access_key. If not found,
the value of the environment variable EC2_SECRET_KEY will be used; if the environment variable is unset,
GC3Pie will raise a ConfigurationError.

Any other key/value pair will be silently ignored.

Example. The following configuration section is used to access an EC2-compatible resource (access and secret keys
are of course invalid):

[auth/hobbes]
type=ec2
ec2_access_key=1234567890qwertyuiopasdfghjklzxc
ec2_secret_key=cxzlkjhgfdsapoiuytrewq0987654321

resource sections

Each resource section must begin with a line of the form:

[resource/name]

You can have as many [resource/name] sections as you want; this allows you to define many different resources.
Each [resource/name] section must reference one (and one only) [auth/name] section (by its auth key).

Resources currently come in several flavours, distinguished by the value of the type key. Valid values for the type=.
.. configuration line are listed in the table below.

type=... The resource is . . .
ec2+shellcmd a cloud with EC2-compatible APIs: applications are run on Virtual Machines started on the

cloud
lsf an LSF batch-queuing system
pbs a TORQUE or PBSPro batch-queuing system
sge a Grid Engine batch-queuing system
shellcmd a single Linux or MacOSX computer: applications are executed by spawning a local UNIX

process
slurm a SLURM batch-queuing system

Link to [auth/...] sections

All [resource/name] sections must reference a valid [auth/aname] section via the auth=aname line. If the
auth=... line is omitted, GC3Pie’s default is auth=none.

Type of the resource and the referenced [auth/...] section must match:

• Resources of type ec2+shellcmd can only reference [auth/...] sections of type ec2.

• Batch-queuing resources (type is one of sge, pbs, lsf, or slurm) and resources of type shellcmd
can reference [auth/...] sections of type ssh (when transport=ssh) or [auth/none] (when
transport=local).

12 Chapter 2. Table of Contents

http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/index.html
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.pbspro.org/
http://gridengine.org/blog/2011/11/23/what-now/
https://computing.llnl.gov/linux/slurm/

gc3pie Documentation, Release 2.6.8

Configuration keys common to all resource types

The following configuration keys are commmon to all resources, regardless of type.

Configura-
tion key

Meaning

type Resource type, see above.
auth Name of a valid [auth/name] section; only the authentication section name (after the /) must

be specified.
max_cores_per_jobMaximum number of CPU cores that a job can request; a resource will be dropped during the

brokering process if a task requests more cores than this.
max_memory_per_coreMaximum amount of memory that a task can request; a resource will be dropped during the

brokering process if a task requests more memory than this.
max_walltimeMaximum job running time.
max_cores Total number of cores provided by the resource.
architectureProcessor architecture. Should be one of the strings x86_64 (for 64-bit Intel/AMD/VIA proces-

sors), i686 (for 32-bit Intel/AMD/VIA x86 processors), or x86_64,i686 if both architectures
are available on the resource.

time_cmd Path to the GNU time program. Default is /usr/bin/time
large_file_thresholdFiles less than this size will be copied in one go. Only relevant for SSH transfers; ignored other-

wise.
large_file_chunk_sizeFiles larger than the threshold above will be copied in chunks of this size, one chunk at a time.

Only relevant for SSH transfers; ignored otherwise.

Configuration keys common to batch-queuing resource types

The following configuration keys can be used in any resource of type pbs, lsf, sge, or slurm.

• spooldir: Root path to the batch jobs’ working directories. GC3Pie will create dedicated temporary working
directories, one for each job, within this root folder.

By default, working directories are created as subdirectories of $HOME/.gc3pie_jobs.

Note: The job working directories must be visible (with the same filesystem path) and writable on both the
front-end node (with which GC3Pie interacts) and the compute nodes (where a job’s payload actually runs).

• prologue: Path to a script file, whose contents are inserted into the submission script of each application that
runs on the resource. Commands from the prologue script are executed before the real application; the prologue
is intended to execute some shell commands needed to setup the execution environment before running the
application (e.g. running a module load ... command).

Note: The prologue script must be a valid plain /bin/sh script; she-bang indications will not be honored.

• application_prologue: Same as prologue, but it is used only when application matches the
name of the application (as specified by the application_name attribute on the GC3Pie Application
instance).

• prologue_content: A (possibly multi-line) string that will be inserted into the submission script and exe-
cuted before the real application. Like the prologue script, commands must be given using /bin/sh syntax.

2.1. User Documentation 13

https://en.wikipedia.org/wiki/Shebang_(Unix)

gc3pie Documentation, Release 2.6.8

• application_prologue_content: Same as prologue_content, but it is used only when
application matches the name of the application (as specified by the application_name attribute on
the GC3Pie Application instance).

Warning: Errors in a prologue script will prevent any application from running on the resource! Keep prologue
commands to a minimum and always check their correctness.

If several prologue-related options are specified, then commands are inserted into the submission script in the following
order:

• first content of the prologue script,

• then content of the application_prologue script,

• then commands from the prologue_content configuration item,

• finally commands from the application_prologue_content configuration item.

A similar set of options allow defining commands to be executed after an application has finished running:

• epilogue: The content of the epilogue script will be inserted into the submission script and is executed after
the real application has been submitted

Note: The epilogue script must be a valid plain /bin/sh script; she-bang indications will not be honored.

• application_epilogue : Same as epilogue, but used only when
{application}`:file: matches the name of the application (as specified
by the ``application_name attribute on the GC3Pie Application instance).

• epilogue_content: A (possibly multi-line) string that will be inserted into the submission script and ex-
ecuted after the real application has completed. Like the epilogue script, commands must be given using
/bin/sh syntax.

• application_epilogue_content : Same as epilogue_content, but used only when
application matches the name of the application (as specified by the application_name attribute on
the GC3Pie Application instance).

Warning: Errors in an epilogue script prevent GC3Pie from reaping the application’s exit status. In particular,
errors in the epilogue commands can make GC3Pie consider the whole application as failed, and use the epilogue’s
error exit as the overall exit code.

If several epilogue-related options are specified, then commands are inserted into the submission script in the following
order:

• first contents of the epilogue script,

• then contents of the application_epilogue script,

• then commands from the epilogue_content configuration item,

• finally commands from the application_epilogue_content configuration item.

sge resources (all batch systems of the Grid Engine family)

The following configuration keys are required in a sge-type resource section:

14 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/Shebang_(Unix)

gc3pie Documentation, Release 2.6.8

• frontend: should contain the FQDN (Fully-qualified domain name) of the SGE front-end node. An SSH
connection will be attempted to this node, in order to submit jobs and retrieve status info.

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified in
frontend via SSH in order to execute SGE commands. If local, the SGE commands are run directly on the
machine where GC3Pie is installed.

To submit parallel jobs to SGE, a “parallel environment” name must be specified. You can specify the PE to be used
with a specific application using a configuration parameter application name + _pe (e.g., gamess_pe, zods_pe);
the default_pe parameter dictates the parallel environment to use if no application-specific one is defined. If
neither the application-specific, nor the ‘‘default_pe‘‘ parallel environments are defined, then submission of parallel
jobs will fail.

When a job has finished, the SGE batch system does not (by default) immediately write its information into the
accounting database. This creates a time window during which no information is reported about the job by SGE,
as if it never existed. In order not to mistake this for a “job lost” error, GC3Libs allow a “grace time”: qacct job
information lookups are allowed to fail for a certain time span after the first time qstat failed. The duration of this
time span is set with the sge_accounting_delay parameter, whose default is 15 seconds (matches the default in
SGE, as of release 6.2):

• sge_accounting_delay: Time (in seconds) a failure in qacct will not be considered critical.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the SGE backend:

• qsub: submit a job.

• qacct: get info on resources used by a job.

• qdel: cancel a job.

• qstat: get the status of a job or the status of available resources.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

pbs resources (TORQUE and PBSPro batch-queueing systems)

The following configuration keys are required in a pbs-type resource section:

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified in
frontend via SSH in order to execute Troque/PBS commands. If local, the TORQUE/PBSPro commands
are run directly on the machine where GC3Pie is installed.

2.1. User Documentation 15

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.8

• frontend: should contain the FQDN of the TORQUE/PBSPro front-end node. This configuration item is
only relevant if transport is local. An SSH connection will be attempted to this node, in order to submit
jobs and retrieve status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the PBS backend:

• queue: the name of the queue to which jobs are submitted. If empty (the default), no queue will be specified
during submission, using the resource manager’s default.

• qsub: submit a job.

• qdel: cancel a job.

• qstat: get the status of a job or the status of available resources.

• tracejob: get info on resources used by a job.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

lsf resources (IBM LSF)

The following configuration keys are required in a lsf-type resource section:

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified in
frontend via SSH in order to execute LSF commands. If local, the LSF commands are run directly on the
machine where GC3Pie is installed.

• frontend: should contain the FQDN of the LSF front-end node. This configuration item is only relevant if
transport is local. An SSH connection will be attempted to this node, in order to submit jobs and retrieve
status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the LSF backend:

• bsub: submit a job.

• bjobs: get the status and resource usage of a job.

• bkill: cancel a job.

• lshosts: get info on available resources.

16 Chapter 2. Table of Contents

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.8

LSF commands use a weird formatting: lines longer than 79 characters are wrapped around, and the continuation
line starts with a long run of spaces. The length of this run of whitespace seems to vary with LSF version; GC3Pie
is normally able to auto-detect it, but there can be a few unlikely cases where it cannot. If this ever happens, the
following configuration option is here to help:

• lsf_continuation_line_prefix_length: length (in characters) of the whitespace prefix of continu-
ation lines in bjobs output. This setting is normally not needed.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

slurm resources

The following configuration keys are required in a slurm-type resource section:

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified
in frontend via SSH in order to execute SLURM commands. If local, the SLURM commands are run
directly on the machine where GC3Pie is installed.

• frontend: should contain the FQDN of the SLURM front-end node. This configuration item is only relevant
if transport is ssh. An SSH connection will be attempted to this node, in order to submit jobs and retrieve
status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the SLURM backend:

• sbatch: submit a job; can specify additional arguments (they will be inserted between the sbatch invocation
and the GC3Pie-provided options)

• srun: run a job’s payload; can specify additional arguments (they will be inserted between the srun invocation
and the GC3Pie-provided options)

• scancel: cancel a job.

• squeue: get the status of a job or of the available resources.

• sacct: get info on resources used by a job.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

2.1. User Documentation 17

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.8

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

shellcmd resources

The following optional configuration keys are available in a shellcmd-type resource section:

• transport: Like any other resources, possible values are ssh or local. Default value is local.

• frontend: If transport is ssh, then frontend is the FQDN of the remote machine where the jobs will be
executed.

• time_cmd: ShellcmdLrms needs the GNU implementation of the command time in order to get resource
usage of the submitted jobs. time_cmd must contains the path to the binary file if this is different from the
standard (/usr/bin/time).

• override: ShellcmdLrms by default will try to gather information on the system the resource is running
on, including the number of cores and the available memory. These values may be different from the values
stored in the configuration file. If override is True, then the values automatically discovered will be used. If
override is False, the values in the configuration file will be used regardless of the real values discovered by
the resource.

• spooldir: Root path to a filesystem location where to create temporary working directories for processes
executed through this backend. GC3Pie will create dedicated temporary working directories, one for each job,
within this root folder.

By default, working directories are created as subdirectories of $HOME/.gc3pie_jobs.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

ec2+shellcmd resource

The following configuration options are available for a resource of type ec2+shellcmd. If these options are omitted,
then the default of the boto python library will be used, which at the time of writing means use the default region on
Amazon.

18 Chapter 2. Table of Contents

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5
https://github.com/boto/boto

gc3pie Documentation, Release 2.6.8

• ec2_url: The URL of the EC2 frontend. On Amazon’s AWS this is something like https://ec2.
us-east-1.amazonaws.com (this is valid for the zone us-east-1 of course). If no value is specified,
the environment variable EC2_URL will be used, and if not found an error is raised.

• ec2_region: the region you want to access to.

• keypair_name: the name of the keypair to use when creating a new instance on the cloud. If it’s not found,
a new keypair with this name and the key stored in public_key will be used. Please note that if the keypair
exists already on the cloud but the associated public key is different from the one stored in public_key, then
an error is raised and the resource will not be used.

• public_key: public key to use when creating the keypair.

Note: GC3Pie assumes that the corresponding private key is stored on a file with the same path but without the
.pub extension. This private key is necessary in order to access the virtual machines created on the cloud.

Note: For Amazon AWS users: Please note that AWS EC2 does not accept DSA keys; use RSA keys only for
AWS resources.

• vm_auth: the name of a valid auth stanza used to connect to the virtual machine.

• instance_type: the instance type (aka flavor, aka size) you want to use for your virtual machines by default.

• <application>_instance_type: you can override the default instance type for a specific application
by defining an entry in the configuration file for that application. For example:

instance_type=m1.tiny
gc_gps_instance_type=m1.large

will use instance type m1.large for the gc_gps GC3Pie application, and m1.tiny for all the other appli-
cations.

• image_id: the ami-id of the image you want to use.

• <application>_image_id: override the generic image_id for a specific application.

For example:

image_id=ami-00000048
gc_gps_image_id=ami-0000002a

will make GC3Pie use the image ami-0000002a when running gc_gps, and image ami-00000048 for
all other applications.

• security_group_name: name of the security group to associate with VMs started by GC3Pie.

If the named security group cannot be found, it will be created using the rules found
in security_group_rules. If the security group is found but some of the rules in
security_group_rules are not present, they will be added to the security groups. Additional
rules, which are listed in the EC2 console but not included in security_group_rules, will not be
removed from the security group.

• security_group_rules: comma separated list of security rules the security_group must have.

Each rule has the form:

PROTOCOL:PORT_RANGE_START:PORT_RANGE_END:IP_NETWORK

2.1. User Documentation 19

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

gc3pie Documentation, Release 2.6.8

where:

– PROTOCOL is one of tcp, udp, icmp;

– PORT_RANGE_START and PORT_RANGE_END are integers and define the range of ports to allow. If
PROTOCOL is icmp please use -1 for both values since in icmp there is no concept of port.

– IP_NETWORK is a range of IP to allow in the form A.B.C.D/N.

For instance, to allow SSH access to the virtual machine from any machine in the internet you can use:

security_group_rules = tcp:22:22:0.0.0.0/0

Note: In order to be able to access the virtual machines it created, GC3Pie needs to be able to connect via SSH,
so a rule like the above is probably necessary in any GC3Pie configuration. For better security, it is wise to only
allow the IP address or the range of IP addresses in use at your institution.

• vm_pool_max_size: the maximum number of Virtual Machine GC3Pie will start on this cloud. If 0 then
there is no predefined limit to the number of virtual machines that GC3Pie can spawn.

• user_data: the content of a script that will run after the startup of the machine. For instance, to automatically
upgrade a ubuntu machine after startup you can use:

user_data=#!/bin/bash
aptitude -y update
aptitude -y safe-upgrade

Note: When entering multi-line scripts, lines after the first one (where user_data= is) must be indented, i.e.,
begin with one or more spaces.

• <application>_user_data: override the generic user_data for a specific application.

For example:

user_data=
warholize_user_data = #!/bin/bash
aptitude -y update && aptitude -y install imagemagick

will install the imagemagick package only for VMs meant to run the warholize application.

Example resource sections

Example 1. This configuration stanza defines a resource to submit jobs to the Grid Engine cluster whose front-end
host is ocikbpra.uzh.ch:

[resource/ocikbpra]
A single SGE cluster, accessed by SSH'ing to the front-end node
type = sge
auth = <auth_name> # pick an ``ssh`` type auth, e.g., "ssh1"
transport = ssh
frontend = ocikbpra.uzh.ch
gamess_location = /share/apps/gamess
max_cores_per_job = 80
max_memory_per_core = 2

(continues on next page)

20 Chapter 2. Table of Contents

http://gridengine.org/blog/2011/11/23/what-now/

gc3pie Documentation, Release 2.6.8

(continued from previous page)

max_walltime = 2
ncores = 80

Example 2. This configuration stanza defines a resource to submit jobs on virtual machines that will be automatically
started by GC3Pie on Hobbes, the private OpenStack cloud of the University of Zurich:

[resource/hobbes]
enabled=yes
type=ec2+shellcmd
ec2_url=http://hobbes.gc3.uzh.ch:8773/services/Cloud
ec2_region=nova

auth=ec2hobbes
These values my be overwritten by the remote resource
max_cores_per_job = 8
max_memory_per_core = 2
max_walltime = 8
max_cores = 32
architecture = x86_64

keypair_name=my_name
If keypair does not exists, a new one will be created starting from
`public_key`. Note that if the desired keypair exists, a check is
done on its fingerprint and a warning is issued if it does not match
with the one in `public_key`
public_key=~/.ssh/id_dsa.pub
vm_auth=gc3user_ssh
instance_type=m1.tiny
warholize_instance_type = m1.small
image_id=ami-00000048
warholize_image_id=ami-00000035
security_group_name=gc3pie_ssh
security_group_rules=tcp:22:22:0.0.0.0/0, icmp:-1:-1:0.0.0.0/0
vm_pool_max_size = 8
user_data=
warholize_user_data = #!/bin/bash

aptitude update && aptitude install -u imagemagick

Enabling/disabling selected resources

Any resource can be disabled by adding a line enabled = false to its configuration stanza. Conversely, a line
enabled = true will undo the effect of an enabled = false line (possibly found in a different configuration
file).

This way, resources can be temporarily disabled (e.g., the cluster is down for maintenance) without having to remove
them from the configuration file.

You can selectively disable or enable resources that are defined in the system-wide configuration file. Two main
use cases are supported: the system-wide configuration file :file:/etc/gc3/gc3pie.conf lists and enables all
available resources, and users can turn them off in their private configuration file :file:~/.gc3/gc3pie.conf; or
the system-wide configuration can list all available resources but keep them disabled, and users can enable those they
prefer in the private configuration file.

2.1. User Documentation 21

http://www.gc3.uzh.ch/infrastructure/hobbes

gc3pie Documentation, Release 2.6.8

Environment Variables

The following environmental variables affect GC3Pie operations.

GC3PIE_CONF

Path to an alternate configuration file, that is read upon initialization of GC3Pie. If defined, this file is read
instead of the default $HOME/.gc3/gc3pie.conf; if undefined or empty, the usual configuration file
is loaded.

If this variable is defined, the logging configuration file is looked for in the same directory as the gc3pie.
conf file, falling back to $HOME/.gc3/gc3pie.log.conf if not found there.

GC3PIE_ID_FILE

Path to the a shared state file, used for recording the “next available” job ID number. By default, it is
located at ~/.gc3/next_id.txt:file:.

GC3PIE_NO_CATCH_ERRORS

Comma-separated list of unexpected/generic error patterns upon which GC3Pie will not act (by default,
ignoring them). Each of these “unignored” errors will be propagated all the way up to top-level. This
facilitates running GC3Pie scripts in a debugger and inspecting the code when some unexpected error
condition happens.

You can specify which errors to “unignore” by:

• Error class name (e.g., InputFileError). Note that this must be the exact class name of the
error: GC3Pie will not walk the error class hierarchy for matches.

• Function/class/module name: all errors handled in the specified function/class/module will be prop-
agated to the caller.

• Additional keywords describing the error. Please have a look at the source code for these keywords.

GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL

If this environmental variable is set to yes or 1, GC3Pie will abort operations immediately if a configured
resource cannot be initialized. The default behavior is instead to ignore initialization errors and only abort
if no resources can be initialized.

GC3Pie usage tutorials

The following slides provide an overview of GC3Pie features and usage from a users’ perspective. They are used in
the GC3Pie for users training held regularly at the University of Zurich. (Thus, they may contain references to local
infrastructure or systems but should be comprehensible and -hopefully- useful for a more general audience as well.)

Introduction to GC3Pie

Introduction to the software: what is GC3Pie, what is it for, and an overview of its features for writing
high-throughput computing scripts.

Introduction to GC3Pie session-based scripts

An overview of the features of GC3Pie’s session-based scripts and the associated command-line utilities.

The GC3Apps software

GC3Apps is a collection command line front-end to manage submission of a (potentially) large number of computa-
tional job to different batch processing systems. For example, the GC3Apps commands ggamess can run GAMESS
jobs on the SMSCG infrastructure and on any computational cluster you can ssh:command: into.

22 Chapter 2. Table of Contents

https://www.s3it.uzh.ch/en/scienceit/support/training/gc3pie/users.html
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part01.pdf
https://github.com/uzh/gc3pie/tree/master/docs/users/tutorial/slides.pdf
http://www.msg.ameslab.gov/gamess/
http://www.smscg.ch/

gc3pie Documentation, Release 2.6.8

This chapter is a tutorial for the GC3Apps command-line scripts: it explains the common concepts and features, then
goes on to describe the specifics of each command in larger detail.

All GC3Apps scripts share a common set of functionalities, which are derive from a common blueprint, named a
session-based script, described in Section Introduction to session-based scripts below. Script-specific sections detail
the scope and options that are unique to a given script.

If you find a technical term whose meaning is not clear to you, please look it up in the Glossary. (But feel free to ask
on the GC3Pie mailing list if it’s still unclear!)

Introduction to session-based scripts

All GC3Apps scripts derive their core functionality from a common blueprint, named a session-based script. The
purpose of this section is to describe this common functionality; script-specific sections detail the scope and options
that are unique to a given script. Readers interested in Python programming can find the complete documentation
about the session-based script API in the SessionBasedScript section.

The functioning of GC3Apps scripts revolves around a so-called session. A session is just a named collection of jobs.
For instance, you could group into a single session jobs that analyze a set of related files.

Each time it is run, a GC3Apps script performs the following steps:

1. Reads the session directory and loads all stored jobs into memory. If the session directory does not exist, one
will be created with empty contents.

2. Scans the command-line input arguments: if existing jobs do not suffice to analyze the input data, new jobs are
added to the session.

3. The status of all existing jobs is updated, output from finished jobs is collected, and new jobs are submitted.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option below.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

Execution can be interrupted at any time by pressing Ctrl+C.

Basic command-line usage and options

The exact command-line usage of session-based scripts varies from one script to the other, so please consult the
documentation page for your application. There are quite a number of common options and behaviors, however,
which are described here.

Continuous execution

While single-pass execution of a GC3Apps script is possible (and sometimes used), it is much more common to keep
the script running and let it manage jobs until all are finished. This is accomplished with the following command-line
option:

-C NUM, --continuous NUM Keep running, monitoring jobs and possibly submitting
new ones or fetching results every NUM seconds.

When all jobs are finished, a GC3Apps script exits even if the -C
option is given.

2.1. User Documentation 23

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.6.8

Verbose listing of jobs

Only a summary of job states is printed by default at the end of step 3., together with the count of jobs that are in the
specified state. Use the -l option (see below) to get a detailed listing of all jobs.

-l STATE, --state STATE Print a table of jobs including their status.

The STATE argument restricts output to jobs in that particular state.
It can be a single state word (e.g., RUNNING) or a comma-separated
list thereof (e.g., NEW,SUBMITTED,RUNNING).

The pseudo-states ok and failed are also allowed for select-
ing jobs in TERMINATED state with exit code (respectively) 0 or
nonzero.

If STATE is omitted, no restriction is placed on job states, and a table
of all jobs is printed.

Maximum number of concurrent jobs

There is a maximum number of jobs that can be in SUBMITTED or RUNNING state at a given time. GC3Apps scripts
will delay submission of newly-created jobs so that this limit is never exceeded. The default limit is 50, but it can be
changed with the following command-line option:

-J NUM, --max-running NUM Set the maximum NUMber of jobs (default: 50) in
SUBMITTED or RUNNING state.

Location of output files

By default, output files are placed in the same directory where the corresponding input file resides. This can be changed
with the following option; it is also possible to specify output locations that vary depending on certain job features.

-o DIRECTORY, --output DIRECTORY Output files from all jobs will be collected in
the specified DIRECTORY path. If the destination directory does not
exist, it is created.

Job control options

These command-line options control the requirements and constraints of new jobs. Indeed, note that changing the
arguments to these options does not change the corresponding requirements on jobs that already exist in the session.

-c NUM, --cpu-cores NUM Set the number of CPU cores required for each job (default:
1). NUM must be a whole number.

-m GIGABYTES, --memory-per-core GIGABYTES Set the amount of memory re-
quired per execution core; (Default: 2GB). Specify this as an integral
number followed by a unit, e.g. ‘512MB’ or ‘4GB’. Valid unit names
are: ‘B’, ‘GB’, ‘GiB’, ‘KiB’, ‘MB’, ‘MiB’, ‘PB’, ‘PiB’, ‘TB’, ‘TiB’,
‘kB’.

-r NAME, --resource NAME Submit jobs to a specific resource. NAME is a reource
name or comma-separated list of resource names. Use the command
gservers to list available resources.

24 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

-w DURATION, --wall-clock-time DURATION Set the time limit for each job; default
is ‘8 hours’. Jobs exceeding this limit will be stopped and consid-
ered as ‘failed’. The duration can be expressed as a whole number
followed by a time unit, e.g., ‘3600 s’, ‘60 minutes’, ‘8 hours’, or a
combination thereof, e.g., ‘2hours 30minutes’. Valid unit names are:
‘d’, ‘day’, ‘days’, ‘h’, ‘hour’, ‘hours’, ‘hr’, ‘hrs’, ‘m’, ‘microsec’,
‘microseconds’, ‘min’, ‘mins’, ‘minute’, ‘minutes’, ‘ms’, ‘nanosec’,
‘nanoseconds’, ‘ns’, ‘s’, ‘sec’, ‘second’, ‘seconds’, ‘secs’.

Session control options

This set of options control the placement and contents of the session.

-s PATH, --session PATH Store the session information in the directory at PATH. (By
default, this is a subdirectory of the current directory, named after
the script you are executing.)

If PATH is an existing directory, it will be used for storing job in-
formation, and an index file (with suffix .csv) will be created in it.
Otherwise, the job information will be stored in a directory named
after PATH with a suffix .jobs appended, and the index file will be
named after PATH with a suffix .csv added.

-N, --new-session Discard any information saved in the session directory (see the
--session option) and start a new session afresh. Any informa-
tion about jobs previously recorded in the session is lost.

-u, --store-url URL Store GC3Pie job information at the persistent storage specified by
URL. The URL can be any form that is understood by the gc3libs.
persistence.make_store() function (which see for details).
A few examples:

• sqlite – the jobs are stored in a SQLite3 database named
jobs.db and contained in the session directory.

• /path/to/a/directory – the jobs are stored in the given
directory, one file per job (this is the default format used by
GC3Pie)

• sqlite:////path/to/a/file.db – the jobs are stored
in the given SQLite3 database file.

• mysql://user,passwd@server/dbname – jobs are
stored in table store of the specified MySQL database. The
DB server and connection credentials (username, password) are
also part of the URL.

If this option is omitted, GC3Pie’s SessionBasedScript defaults to
storing jobs in the subdirectory jobs of the session directory; each
job is saved in a separate file.

Exit code

A GC3Apps script exits when all jobs are finished, when some error occurred that prevented the script from complet-
ing, or when a user interrupts it with Ctrl+C

2.1. User Documentation 25

gc3pie Documentation, Release 2.6.8

In any case, the exit code of GC3Apps scripts tracks job status (in the following sense). The exitcode is a bitfield; the
4 least-significant bits are assigned a meaning according to the following table:

Bit Meaning
0 Set if a fatal error occurred: the script could not complete
1 Set if there are jobs in FAILED state
2 Set if there are jobs in RUNNING or SUBMITTED state
3 Set if there are jobs in NEW state

This boils down to the following rules:

• exitcode is 0: all jobs are DONE, no further action will be taken by the script (which exists immediately if called
again on the same session).

• exitcode is 1: an error interrupted the script execution.

• exitcode is 2: all jobs finished, but some are in FAILED state.

• exitcode > 3: run the script again to make jobs progress.

The ggamess script

GC3Apps provide a script drive execution of multiple gamess jobs each of them with a different input file. It uses
the generic gc3libs.cmdline.SessionBasedScript framework.

The purpose of GAMESS is to execute several concurrent runs of GAMESS each with separate input file. These runs
are performed in parallel using every available GC3Pie parameters.

How to run GAMESS on the Grid

SSH to ocikbgtw, then run the command (it’s one single command line, even if it appears broken in several ones in the
mail):

ggamess.py -A ~/beckya-dmulti.changes.tar.gz -R 2011R3-beckya-dmulti -s "a_session_
→˓name" "input_files_or_directories"

The parts in double quotes should be replaced with actual content:

a_session_name:

Used for grouping. This is a word of your choosing (e.g., “test1”, “control_group”), used
as a label to tag a group of analyses. Multiple concurrent sessions can exist, and they won’t
interfere one with the other. Again, note that a single session can run many different .inp files.

input_files_or_directories:

This part consists in the path name of .inp files or a directory containing .inp files. When a
directory is specified, all the .inp files contained in it are submitted as GAMESS jobs.

After running, the program will print a short summary of the session (how many jobs running, how many queued, how
many finished). Each finished job creates one directory (whose name is equal to the name of the input file, minus the
trailing .inp), which contains the .out and .dat files.

For shorter typing, I have defined an alias ggms to expand to the above string ggamess.py -A ...
2011R3-beckya-dmulti, so you could shorten the command to just:

26 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

ggms -s "a_session_name" "input_files_or_directories"

For instance, to use ggames.py to analyse a single .inp file you must run:

ggms -s "single" dmulti/inp/neutral/dmulti_cc4l.inp

while to use ggamess.py to run several GAMESS jobs in parallel:

ggms -s "multiple" dmulti/inp/neutral

Tweaking execution

Command-line options (those that start with a dash character ‘-’) can be used to alter the behavior of the ggamess.py
command:

-A filename.changes.tar.gz

This selects the file containing your customized version of GAMESS in a format suitable for
running in a virtual machine on the Grid. This file should be created following the procedure
detailed below.

-R version

Select a specific version of GAMESS. This should have been installed in the virtual ma-
chine within a directory named gamess-version; for example, your modified GAMESS
is saved in directory gamess-2011R3-beckya-dmulti so the “version” string is
2011R3-beckya-dmulti.

If you omit the -R “version” part, you get the default GAMESS which is presently 2011R1.

-s session

Group jobs in a named session; see above.

-w NUM

Request a running time of at NUM hours. If you omit this part, the default is 8 hours.

-m NUM

Request NUM Gigabytes of memory for running each job. GAMESS’ memory is measured in
words, and each word is 8 bytes; add 1 GB to the total to be safe :-)

Updating the GAMESS code

For this you will need to launch the AppPot virtual machine, which is done by running the following command at the
command prompt on ocikbgtw:

apppot-start.sh

After a few seconds, you should find yourself at the same user@rootstrap prompt that you get on your VirtualBox
instance, so you can use the same commands etc.

The only difference of note is that you can exchange files between the AppPot virtual machine and ocikbgtw via the
job directory (whereas it’s /scratch in VirtualBox). So: files you copy into job in the AppPot VM will appear into
your home directory on ocikbgtw, and conversely files from your home directory on ocikbgtw can be read/written as if
they were into directory job in the AppPot VM.

2.1. User Documentation 27

gc3pie Documentation, Release 2.6.8

Once you have compiled a new version of GAMESS that you wish to test, you need to run this command (at the
user@rootstrap command prompt in the AppPot VM):

sudo apppot-snap changes ~/job/beckya-dmulti.changes.tar.gz

This will overwrite the file beckya-dmulti.changes.tar.gz with the new GAMESS version. If you don’t
want to overwrite it and instead create another one, just change the filename above (but it has to end with the string
.changes.tar.gz), and the use the new name for the -R option to ggamess.py

Exit the AppPot VM by typing exit at the command prompt.

The ggeotop script

GC3Apps provide a script drive execution of multiple GEOtop jobs. It uses the generic
gc3libs.cmdline.SessionBasedScript framework.

From GEOtop’s “read me” file:

#
RUNNING
Run this simulation by calling the executable (GEOtop_1.223_static)
and giving the simulation directory as an argument.
#
EXAMPLE
ls2:/group/geotop/sim/tmp/000001>./GEOtop_1.223_static ./
#
TERMINATION OF SIMULATION BY GEOTOP
When GEOtop terminates due to an internal error, it mostly reports this
by writing a corresponding file (_FAILED_RUN or _FAILED_RUN.old) in the
simulation directory. When is terminates sucessfully this file is
named (_SUCCESSFUL_RUN or _SUCCESSFUL_RUN.old).
#
RESTARTING SIMULATIONS THAT WERE TERMINATED BY THE SERVER
When a simulation is started again with the same arguments as described
above (RUNNING), then it continues from the last saving point. If
GEOtop finds a file indicating a successful/failed run, it terminates.

Introduction

ggeotop driver script acan the specified INPUT directories recursively for simulation directories and submit a job
for each one found; job progress is monitored and, when a job is done, its output files are retrieved back into the
simulation directory itself.

A simulation directory is defined as a directory containing a geotop.inpts file, an in and an out folders.

The ggeotop command keeps a record of jobs (submitted, executed and pending) in a session file (set name with the
-s option); at each invocation of the command, the status of all recorded jobs is updated, output from finished jobs is
collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input files are
added to the command line.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; ggeotop
will delay submission of newly-created jobs so that this limit is never exceeded.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; ggeotop
will delay submission of newly-created jobs so that this limit is never exceeded.

In more detail, ggeotop does the following:

28 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs into
memory. If the session directory does not exist, one will be created with empty contents.

2. Recursively scans trough input folder searching for any valid folder.

ggeotop will generate a collection of jobs one for each valid input folder. Each job will transfer the input
folder to the remote execution node and run GEOTop. GEOTop reads geotop.inpts files for getting instructions
on how to find the input data, what and how to process and where to place generated output results. Extracted
from a generic geotop.inpts file:

DemFile = "in/dem"
MeteoFile = "in/meteo"
SkyViewFactorMapFile = "in/svf"
SlopeMapFile = "in/slp"
AspectMapFile = "in/asp"

!==
! DIST OUTPUT
!==
SoilAveragedTempTensorFile = "out/maps/T"
NetShortwaveRadiationMapFile="out/maps/SWnet"
InShortwaveRadiationMapFile="out/maps/SWin"
InLongwaveRadiationMapFile="out/maps/LWin"
SWEMapFile= "out/maps/SWE"
AirTempMapFile = "out/maps/Ta"

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in step
2.

4. For each of the terminated jobs, a post-process routine is executed to check and validate the consistency of
the generated output. If no _SUCCESSFUL_RUN or _FAILED_RUN file is found, the related job will be
resubmitted together with the current input and output folders. GEOTop is capable of restarting an interrupted
claculation by inspecting the intermediate results generated in out folder.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program ggeotop exits when all jobs have run to completion, i.e., when all valid input folders have been
computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be resumed
at a later stage by calling ggeotop with exactly the same command-line options.

Command-line invocation of ggeotop

The ggeotop script is based on GC3Pie’s session-based script model; please read also the Introduction to session-
based scripts section for an introduction to sessions and generic command-line options.

A ggeotop command-line is constructed as follows:

1. Each argument (at least one should be specified) is considered as a folder reference.

2. -x option is used to specify the path to the GEOtop executable file.

Example 1. The following command-line invocation uses ggeotop to run GEOTop on all valid input folder found
in the recursive check of input_folder:

2.1. User Documentation 29

gc3pie Documentation, Release 2.6.8

$ ggeotop -x /apps/geotop/bin/geotop_1_224_20120227_static ./input_folder

Example 2.

$ ggeotop --session SAMPLE_SESSION -w 24 -x /apps/geotop/bin/geotop_1_224_20120227_
→˓static ./input_folder

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of the --session
option in Introduction to session-based scripts). The command above creates the jobs, submits them, and finally prints
the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/50 (0.0%)
SUBMITTED 50/50 (100.0%)
TERMINATED 0/50 (0.0%)
TERMINATING 0/50 (0.0%)
total 50/50 (100.0%)

Calling ggeotop over and over again will result in the same jobs being monitored;

The -C option tells ggeotop to continue running until all jobs have finished running and the output files have been
correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/540 (0.0%)
SUBMITTED 0/50 (0.0%)
TERMINATED 50/50 (100.0%)
TERMINATING 0/50 (0.0%)
ok 50/50 (100.0%)
total 50/50 (100.0%)

Each job will be named after the folder name (e.g. 000002) (you could see this by passing the -l option to ggeotop).;
each of these jobs will fill the related input folder with the produced outputs.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Output files for ggeotop

Upon successful completion, the output directory of each ggeotop job contains:

• the out folder will contains what has been produced during the computation of the related job.

Example usage

This section contains commented example sessions with ggeotop.

Manage a set of jobs from start to end

In typical operation, one calls ggeotop with the -C option and lets it manage a set of jobs until completion.

30 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

So, to analyse all valid folders under input_folder, submitting 200 jobs simultaneously each of them requesting
2GB of memory and 8 hours of wall-clock time, one can use the following command-line invocation:

$ ggeotop -s example -C 120 -x
/apps/geotop/bin/geotop_1_224_20120227_static -w 8 input_folder

The -s example option tells ggeotop to store information about the computational jobs in the example.jobs
directory.

The -C 120 option tells ggeotop to update job state every 120 seconds; output from finished jobs is retrieved and
new jobs are submitted at the same interval.

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested parameter range has been
computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Using GC3Pie utilities

GC3Pie comes with a set of generic utilities that could be used as a complemet to the ggeotop command to better
manage a entire session execution.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

or:

gkill -s example job.16

gkill could also be used to cancel jobs in a given state

gkill -s example -l UNKNOWN

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

2.1. User Documentation 31

gc3pie Documentation, Release 2.6.8

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command does
just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session example, you would type

ginfo -s example job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running, and
when it was started:

$ ginfo -s example job.13
job.13

cores: 2
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:05 2012
Submitted to 'wsl' at Tue May 15 09:52:05 2012
RUNNING at Tue May 15 10:07:39 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/116613370683251353308673
lrms_jobname: GC3Pie_00002
original_exitcode: -1
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069259.18
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

RUNNING: 1337069259.18
SUBMITTED: 1337068325.26

unknown_iteration: 0
used_cputime: 1380
used_memory: 3382706

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -c -s example job.13
job.13

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/geotop/results/00002
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/geotop/results/00002'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032

(continues on next page)

32 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

lrms_jobname: GC3Pie_00002
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information

$ ginfo -c -s example job.13
job.13

arguments: 00002
changed: False
environment:
executable: geotop_static
executables: geotop_static
execution:

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/geotop/results/00002
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/geotop/results/00002'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: GC3Pie_00002
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

(continues on next page)

2.1. User Documentation 33

gc3pie Documentation, Release 2.6.8

(continued from previous page)

jobname: GC3Pie_00002
join: True
output_base_url: None
output_dir: /data/geotop/results/00002
outputs:

@output.list: file, , @output.list, None, None, None, None
ggeotop.log: file, , ggeotop.log, None, None, None, None

persistent_id: job.1698503
requested_architecture: x86_64
requested_cores: 2
requested_memory: 4
requested_walltime: 4
stderr: None
stdin: None
stdout: ggeotop.log
tags: APPS/EARTH/GEOTOP

The grosetta and gdocking scripts

GC3Apps provide two scripts to drive execution of applications (protocols, in Rosetta terminology) from the Rosetta
bioinformatics suite.

The purpose of grosetta and gdocking is to execute several concurrent runs of minirosetta or docking_protocol
on a set of input files, and collect the generated output. These runs are performed in parallel using every available
GC3Pie resource; you can of course control how many runs should be executed and select what output files you want
from each one.

The script grosetta is a relatively generic front-end that executes the minirosetta program by default (but a differ-
ent application can be chosen with the -x command-line option). The gdocking script is specialized for running
Rosetta’s docking_protocol program.

Introduction

The grosetta and gdocking execute several runs of minirosetta or docking_protocol on a set of input files, and
collect the generated output. These runs are performed in parallel, up to a limit that can be configured with the -J
command-line option. You can of course control how many runs should be executed and select what output files you
want from each one.

Note: The grosetta and gdocking scripts are very similar in usage. In the following, whatever is written about
grosetta applies to gdocking as well; the differences will be pointed out on a case-by-case basis.

In more detail, grosetta does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs into
memory. If the session directory does not exist, one will be created with empty contents.

2. Scans the input file names given on the command-line, and generates a number of identical computational jobs,
all running the same Rosetta program on the same set of input files. The objective is to compute a specified
number P of decoys of any given PDB file.

The number P of wanted decoys can be set with the --total-decoys option (see below). The option
--decoys-per-job can set the number of decoys that each computational job can compute; this should be

34 Chapter 2. Table of Contents

http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/

gc3pie Documentation, Release 2.6.8

a guessed based on the maximum allowed run time of each job and the time taken by the Rosetta protocol to
compute a single decoy.

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in step
2.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program grosetta exits when all jobs have run to completion, i.e., when the wanted number of decoys
have been computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be
resumed at a later stage by calling grosetta with exactly the same command-line options.

The gdocking program works in exactly the same way, with the important exception that gdocking uses a separate
Rosetta docking_protocol program invocation per input file.

Command-line invocation of grosetta

The grosetta script is based on GC3Pie’s session-based script model; please read also the Introduction to session-
based scripts section for an introduction to sessions and generic command-line options.

A grosetta command-line is constructed as follows:

1. The 1st argument is the flags file, containing options to pass to every executed Rosetta program;

2. then follows any number of input files (copied from your PC to the execution site);

3. then a literal colon character :;

4. finally, you can list any number of output file patterns (copied back from the execution site to your PC); wildcards
(e.g., *.pdb) are allowed, but you must enclose them in quotes. Note that:

• you can omit the output files: the default is "*.pdb" "*.sc" "*.fasc"

• if you omit the output files patterns, omit the colon as well

Example 1. The following command-line invocation uses grosetta to run minirosetta on the molecule
files 1bjpA.pdb, 1ca7A.pdb, and 1cgqA.pdb. The flags file (1st command-line argument) is a
text file containing options to pass to the actual minirosetta program. Additional input files are specified
on the command line between the flags file and the PDB input files.

$ grosetta flags alignment.filt query.fasta query.psipred_ss2 boinc_
→˓aaquery03_05.200_v1_3.gz boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.
→˓pdb 1cgqA.pdb

You can see that the listing of output patterns has been omitted,
so `grosetta`:command: will use the default and retrieve all
`*.pdb`:file:, `*.sc`:file: and `*.fasc`:file: files.

There will be a number of identical jobs being executed as a result of a grosetta or gdocking invocation; this
number depends on the ratio of the values given to options -P and -p:

-P NUM, --total-decoys NUM Compute NUM decoys per input file.

-p NUM, --decoys-per-job NUM Compute NUM decoys in a single job (default: 1).
This parameter should be tuned so that the running time of a sin-
gle job does not exceed the maximum wall-clock time (see the

2.1. User Documentation 35

http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.6.8

--wall-clock-time command-line option in Introduction to
session-based scripts).

If you omit -P and -p, they both default to 1, i.e., one job will be created (as in the example 1. above).

Example 2. The following command-line invocation will run 3 parallel instances of minirosetta, each of
which generates 2 decoys (save the last one, which only generates 1 decoy) of the molecule described in
file 1bjpA.pdb:

$ grosetta --session SAMPLE_SESSION --total-decoys 5 --decoys-per-job 2
→˓flags alignment.filt query.fasta query.psipred_ss2 boinc_aaquery03_05.200_
→˓v1_3.gz boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of
the --session option in Introduction to session-based scripts). The command above creates the jobs,
submits them, and finally prints the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/3 (0.0%)

RUNNING 0/3 (0.0%)
STOPPED 0/3 (0.0%)

SUBMITTED 3/3 (100.0%)
TERMINATED 0/3 (0.0%)
TERMINATING 0/3 (0.0%)

total 3/3 (100.0%)

Note that the status report counts the number of jobs in the session, not the total number of decoys being
generated. (Feel free to report this as a bug.)

Calling grosetta over and over again will result in the same jobs being monitored; to create new jobs, change
the command line and raise the value for -P or -p. (To completely erase an existing session and start over, use the
--new-session option, as per session-based script documentation.)

The -C option tells grosetta to continue running until all jobs have finished running and the output files have been
correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/3 (0.0%)

RUNNING 0/3 (0.0%)
STOPPED 0/3 (0.0%)

SUBMITTED 0/3 (0.0%)
TERMINATED 3/3 (100.0%)

TERMINATING 0/3 (0.0%)
ok 3/3 (100.0%)

total 3/3 (100.0%)

The three jobs are named 0--1, 2--3 and 4--5 (you could see this by passing the -l option to grosetta); each
of these jobs will create an output directory named after the job.

In general, grosetta jobs are named N--M with N and M being two integers from 0 up to the value specified with
option --total-decoys. Jobs generated by gdocking are instead named after the input file, with a .N--M
suffix added.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Note: The naming and contents of output files differ between grosetta and gdocking. Refer to the appropriate
section below!

36 Chapter 2. Table of Contents

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.6.8

Output files for grosetta

Upon successful completion, the output directory of each grosetta job contains:

• A copy of the input PDB files;

• Additional .pdb files named S_random string.pdb, generated by minirosetta during its run;

• A file score.sc;

• Files minirosetta.static.log, minirosetta.static.stdout.txt and minirosetta.
static.stderr.txt.

The minirosetta.static.log file contains the output log of the minirosetta execution. For each of the S_*.
pdb files above, a line like the following should be present in the log file (the file name and number of elapsed seconds
will of course vary!):

protocols.jd2.JobDistributor: S_1CA7A_1_0001 reported success in 124 seconds

The minirosetta.static.stdout.txt contains a copy of the minirosetta output log, plus the output of the
wrapper script. In case of successful minirosetta run, the last line of this file will read:

minirosetta.static: All done, exitcode: 0

Output files for gdocking

Execution of gdocking yields the following output:

• For each .pdb input file, a .decoys.tar file (e.g., for 1bjpa.pdb input, a 1bjpa.decoys.tar output
is produced), which contains the .pdb files of the decoys produced by gdocking.

• For each successful job, a .N–M directory: e.g., for the 1bjpa.1--2 job, a 1bjpa.1--2/ directory is
created, with the following content:

– docking_protocol.log: output of Rosetta’s docking_protocol program;

– docking_protocol.stderr.txt, docking_protocol.stdout.txt: obvoius meaning. The
“stdout” file contains a copy of the docking_protocol.log contents, plus the output from the wrap-
per script.

– docking_protocol.tar.gz: the .pdb decoy files produced by the job.

The following scheme summarizes the location of gdocking output files:

(directory where gdocking is run)/
|
+- file1.pdb Original input file
|
+- file1.N--M/ Directory collecting job outputs from job file1.N--M
| |
| +- docking_protocol.tar.gz
| +- docking_protocol.log
| +- docking_protocol.stderr.txt
| ... etc
|
+- file1.N--M.fasc FASC file for decoys N to M [1]
|
+- file1.decoys.tar tar archive of PDB file of all decoys
| generated corresponding to 'file1.pdb' [2]

(continues on next page)

2.1. User Documentation 37

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.6.8

(continued from previous page)

|
...

Let P be the total number of decoys (the argument to the -P option), and p be the number of decoys per job (argument
to the -p option). Then you would get in a single directory:

1. (P/p) different .fasc files, corresponding to the (P/p) jobs;

2. P different .pdb files, named a_file.0.pdb to a_file.(P-1).pdb

Example usage

This section contains commented example sessions with grosetta. All the files used in this example are available
in the GC3Pie Rosetta test directory (courtesy of Lars Malmstroem).

Manage a set of jobs from start to end

In typical operation, one calls grosetta with the -C option and lets it manage a set of jobs until completion.

So, to generate one decoy from a set of given input files, one can use the following command-line invocation:

$ grosetta -s example -C 120 -P 1 -p 1 \
flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb \
3c6vA.pdb

The -s example option tells grosetta to store information about the computational jobs in the example.jobs
directory.

The -C 120 option tells grosetta to update job state every 120 seconds; output from finished jobs is retrieved and
new jobs are submitted at the same interval.

The -P 1 and -p 1 options set the total number of decoys to compute and the maximum number of decoys that a
single computational job can handle. These values can be arbitrarily high (however the p value should be such that the
computational job can actually compute that many decoys in the allotted wall-clock time).

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested number of decoys (set by the
-P option) has been computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

38 Chapter 2. Table of Contents

http://github.com/uzh/gc3pie/gc3apps/rosetta/test
http://lars.malmstroem.net/

gc3pie Documentation, Release 2.6.8

Managing a session by repeated grosetta invocation

We now show how one can obtain the same result by calling grosetta multiple times (there could be hours of
interruption between one invocation and the next one).

Note: This is not the typical mode of operating with grosetta, but may still be useful in certain settings.

1. Create a session (1 job only, since no -P option is given); the session name is chosen with the -s (short for
--session) option. You should take care of re-using the same session name with subsequent commands.

$ grosetta -s example flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

2. Now we call grosetta again, and request that 3 decoys be computed starting from a single PDB file
(--total-decoys 3 on the command line). Since we are submitting a single PDB file, the 3 decoys will be
computed all in a single run, so the --decoys-per-job option will have value 3.

$ grosetta -s example --total-decoys 3 --decoys-per-job 3 \
flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 3c6vA.pdb

Status of jobs in the 'example.csv' session:
SUBMITTED 3/3 (100.0%)

Note that 3 jobs were submitted: grosetta interprets the --total-decoys option globally, and adds one
job to compute the 2 missing decoys from the file set from step 1. (This is currently a limitation of grosetta)

From here on, one could simply run grosetta -C 120 and let it manage the session until completion of
all jobs, as in the example Manage a set of jobs from start to end above. For the sake of showing how the use
of several command-line options of grosetta, we shall further show how manage the session by repeated
separate invocations.

3. Next step is to monitor the session, so we add the command-line option -l which tells grosetta to list all the
jobs with their status. Also note that we keep the -s example option to tell grosetta that we would like
to operate on the session named example.

All non-option arguments can be omitted: as long as the total number of decoys is unchanged, they’re not
needed.

$ grosetta -s example -l
Decoys Nr. State (JobID) Info
==
0--1 RUNNING (job.766) Running at Mon Dec 20 19:32:08 2010
2--3 RUNNING (job.767) Running at Mon Dec 20 19:33:23 2010
0--2 RUNNING (job.768) Running at Mon Dec 20 19:33:43 2010

Without the -l option only a summary of job statuses is presented:

$ grosetta -s example
Status of jobs in the 'grosetta.csv' session:
RUNNING 3/3 (100.0%)

2.1. User Documentation 39

gc3pie Documentation, Release 2.6.8

Alternatively, we can keep the command line arguments used in the previous invocation: they will be ignored
since they do not add any new job (the number of decoys to compute is always 1):

$ grosetta -s example -l flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb \
3c6vA.pdb

Decoys Nr. State (JobID) Info
==
0--1 RUNNING (job.766)
2--3 RUNNING (job.767) Running at Mon Dec 20 19:33:23 2010
0--2 RUNNING (job.768) Running at Mon Dec 20 19:33:43 2010

Note that the -l option is available also in combination with the -C option (see Manage a set of jobs from start
to end).

4. Calling grosetta again when jobs are done triggers automated download of the results:

$../grosetta.py
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/minirosetta.static.
→˓stdout.txt
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/minirosetta.static.
→˓log
...
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/.arc/input
Status of jobs in the 'grosetta.csv' session:
TERMINATED 1/1 (100.0%)
ok 1/1 (100.0%)

The -l option comes handy to see what directory contains the job output:

$ grosetta -l
Decoys Nr. State (JobID) Info
==
0--1 TERMINATED (job.766) Output retrieved into directory '/tmp/0--1'

The gcrypto script

GC3Apps provide a script drive execution of multiple gnfs-cmd jobs each of them with a different param-
eter set. Allotogehter they form a single crypto simulation of a large parameter space. It uses the generic
gc3libs.cmdline.SessionBasedScript framework.

The purpose of gcrypto is to execute several concurrent runs of gnfs-cmd on a parameter set. These runs are
performed in parallel using every available GC3Pie resource; you can of course control how many runs should be
executed and select what output files you want from each one.

Introduction

Like in a for-loop, the gcrypto driver script takes as input three mandatory arguments:

1. RANGE_START: initial value of the range (e.g., 800000000)

40 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

2. RANGE_END: final value of the range (e.g., 1200000000)

3. SLICE: extent of the range that will be examined by a single job (e.g., 1000)

For example:

gcrypto 800000000 1200000000 1000

will produce 400000 jobs; the first job will perform calculations on the range 800000000 to 800000000+1000, the 2nd
one will do the range 800001000 to 800002000, and so on.

Inputfile archive location (e.g. lfc://lfc.smscg.ch/crypto/lacal/input.tgz) can be specified with the ‘-i’ option. Otherwise
a default filename ‘input.tgz’ will be searched in current directory.

Job progress is monitored and, when a job is done, output is retrieved back to submitting host in folders named:
RANGE_START + (SLICE * ACTUAL_STEP) Where ACTUAL_STEP correspond to the position of the job in
the overall execution.

The gcrypto command keeps a record of jobs (submitted, executed and pending) in a session file (set name with the
‘-s’ option); at each invocation of the command, the status of all recorded jobs is updated, output from finished jobs is
collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input files are
added to the command line.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; gcrypto
will delay submission of newly-created jobs so that this limit is never exceeded.

The gcrypto execute several runs of gnfs-cmd on a parameter set, and collect the generated output. These runs
are performed in parallel, up to a limit that can be configured with the -J command-line option. You can of course
control how many runs should be executed and select what output files you want from each one.

In more detail, gcrypto does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs into
memory. If the session directory does not exist, one will be created with empty contents.

2. Divide the initial parameter range, given in the command-line, into chunks taking the -J value as a reference.
So from a coomand line argument like the following:

$ gcrypto 800000000 1200000000 1000 -J 200

gcrypto will generate an initial chunks of 200 jobs starting from the initial range 800000000 incrementing
of 1000. All jobs will run gnfs-cmd on a specific parameter set (e.g. 800000000, 800001000, 800002000,
. . .). gcrypto will keep constant the number of simulatenous jobs running retrieving those terminated and
submitting new ones untill the whole parameter range has been computed.

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in step
2.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program gcrypto exits when all jobs have run to completion, i.e., when the whole paramenter range has
been computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be resumed
at a later stage by calling gcrypto with exactly the same command-line options.

gcrypto requires a number of default input files common to every submited job. This list of input files is automati-
cally fetched by gcrypto from a default storage repository. Those files are:

2.1. User Documentation 41

gc3pie Documentation, Release 2.6.8

gnfs-lasieve6
M1019
M1019.st
M1037
M1037.st
M1051
M1051.st
M1067
M1067.st
M1069
M1069.st
M1093
M1093.st
M1109
M1109.st
M1117
M1117.st
M1123
M1123.st
M1147
M1147.st
M1171
M1171.st
M8e_1200
M8e_1500
M8e_200
M8e_2000
M8e_2500
M8e_300
M8e_3000
M8e_400
M8e_4200
M8e_600
M8e_800
tdsievemt

When gcrypto has to be executed with a different set of input files, an additional command line argument
--input-files could be used to specify the locatin of a tar.gz archive containing the input files that gnfs-cmd
will expect. Similarly, when a different version of gnfs-cmd command needs to be used, the command line argument
--gnfs-cmd could be used to specify the location of the gnfs-cmd to be used.

Command-line invocation of gcrypto

The gcrypto script is based on GC3Pie’s session-based script model; please read also the Introduction to session-
based scripts section for an introduction to sessions and generic command-line options.

A gcrypto command-line is constructed as follows: Like a for-loop, the gcrypto driver script takes as input three
mandatory arguments:

1. RANGE_START: initial value of the range (e.g., 800000000)

2. RANGE_END: final value of the range (e.g., 1200000000)

3. SLICE: extent of the range that will be examined by a single job (e.g., 1000)

Example 1. The following command-line invocation uses gcrypto to run gnfs-cmd on the parameter set ranging
from 800000000 to 1200000000 with an increment of 1000.

42 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

$ gcrypto 800000000 1200000000 1000

In this case gcrypto will use the default values for determine the chunks size from the default value of the -J option
(default value is 50 simulatenous jobs).

Example 2.

$ gcrypto --session SAMPLE_SESSION -c 4 -w 4 -m 8 800000000 1200000000 1000

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of the --session
option in Introduction to session-based scripts). The command above creates the jobs, submits them, and finally prints
the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/50 (0.0%)
SUBMITTED 50/50 (100.0%)
TERMINATED 0/50 (0.0%)
TERMINATING 0/50 (0.0%)
total 50/50 (100.0%)

Note that the status report counts the number of jobs in the session, not the total number of jobs that would correspond
to the whole parameter range. (Feel free to report this as a bug.)

Calling gcrypto over and over again will result in the same jobs being monitored;

The -C option tells gcrypto to continue running until all jobs have finished running and the output files have been
correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/400k (0.0%)
RUNNING 0/400k (0.0%)
STOPPED 0/400k (0.0%)
SUBMITTED 0/400k (0.0%)
TERMINATED 50/400k (100.0%)
TERMINATING 0/400k (0.0%)
ok 400k/400k (100.0%)
total 400k/400k (100.0%)

Each job will be named after the parameter range it has computed (e.g. 800001000, 800002000, . . .) (you could see
this by passing the -l option to gcrypto); each of these jobs will create an output directory named after the job.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Output files for gcrypto

Upon successful completion, the output directory of each gcrypto job contains:

• a number of .tgz files each of them correspondin to a step within the execution of the gnfs-cmd command.

• A log file named gcrypto.log containing both the stdout and the stderr of the gnfs-cmd execution.

Note: The number of .tgz files may depend on whether the execution of the gnfs-cmd command has completed
or not (e.g. jobs may be killed by the batch system when exausting requested resources)

2.1. User Documentation 43

gc3pie Documentation, Release 2.6.8

Example usage

This section contains commented example sessions with gcrypto.

Manage a set of jobs from start to end

In typical operation, one calls gcrypto with the -C option and lets it manage a set of jobs until completion.

So, to compute a whole parameter range from 800000000 to 1200000000 with an increment of 1000, submitting 200
jobs simultaneously each of them requesting 4 computing cores, 8GB of memory and 4 hours of wall-clock time, one
can use the following command-line invocation:

$ gcrypto -s example -C 120 -J 200 -c 4 -w 4 -m 8 800000000 1200000000 1000

The -s example option tells gcrypto to store information about the computational jobs in the example.jobs
directory.

The -C 120 option tells gcrypto to update job state every 120 seconds; output from finished jobs is retrieved and
new jobs are submitted at the same interval.

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested parameter range has been
computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Using GC3Pie utilities

GC3Pie comes with a set of generic utilities that could be used as a complemet to the gcrypto command to better
manage a entire session execution.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

or:

gkill -s example job.16

gkill could also be used to cancel jobs in a given state

gkill -s example -l UNKNOWN

44 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command does
just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session example, you would type

ginfo -s example job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running, and
when it was started:

$ ginfo -s example job.13
job.13

cores: 2
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:05 2012
Submitted to 'wsl' at Tue May 15 09:52:05 2012
RUNNING at Tue May 15 10:07:39 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/116613370683251353308673
lrms_jobname: LACAL_800001000
original_exitcode: -1
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069259.18
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

RUNNING: 1337069259.18
SUBMITTED: 1337068325.26

unknown_iteration: 0
used_cputime: 1380
used_memory: 3382706

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -c -s example job.13
job.13

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/crypto/results/example.out/8000001000
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
(continues on next page)

2.1. User Documentation 45

gc3pie Documentation, Release 2.6.8

(continued from previous page)

Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/crypto/results/example.out/8000001000'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: LACAL_800001000
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information:

$ ginfo -c -s example job.13
job.13

arguments: 800000800, 100, 2, input.tgz
changed: False
environment:
executable: gnfs-cmd
executables: gnfs-cmd
execution:

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/crypto/results/example.out/8000001000
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/crypto/results/example.out/8000001000'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: LACAL_800001000
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13

(continues on next page)

46 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

TERMINATING: 1337069259.18
unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

inputs:
srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/gnfs-cmd_20120406: gnfs-

→˓cmd
srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/lacal_input_files.tgz:

→˓input.tgz
jobname: LACAL_800000900
join: True
output_base_url: None
output_dir: /data/crypto/results/example.out/8000001000
outputs:

@output.list: file, , @output.list, None, None, None, None
gcrypto.log: file, , gcrypto.log, None, None, None, None

persistent_id: job.1698503
requested_architecture: x86_64
requested_cores: 2
requested_memory: 4
requested_walltime: 4
stderr: None
stdin: None
stdout: gcrypto.log
tags: APPS/CRYPTO/LACAL-1.0

The GC3Utils software

The GC3Utils are lower-level commands, provided to perform common operations on jobs, regardless of their type or
the application they run.

For instance, GC3Utils provide commands to obtain the list and status of computational resources (gservers); to
clear the list of jobs from old and failed ones (gclean); to get detailed information on a submitted job (ginfo,
mainly for debugging purposes).

This chapter is a tutorial for the GC3Utils command-line utilities.

If you find a technical term whose meaning is not clear to you, please look it up in the Glossary. (But feel free to ask
on the GC3Pie mailing list if it’s still unclear!)

Contents

• The GC3Utils software

– gsession: manage sessions

– gstat: monitor the status of submitted jobs

– gtail: peeking at the job output and error report

– gkill: cancel a running job

– gget: retrieve the output of finished jobs

– gclean: remove a completed job from the status list

2.1. User Documentation 47

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.6.8

– gresub: re-submit a failed job

– gservers: list available resources

– ginfo: accessing low-level details of a job

– gselect: select job ids from from a session

– gcloud: manage VMs created by the EC2 backend

gsession: manage sessions

All jobs managed by one of the GC3Pie scripts are grouped into sessions; information related of a session is stored into
a directory. The gsession command allows you to show the jobs related to a specific session, to abort the session
or to completely delete it.

The gsession accept two mandatory arguments: command and session. command must be one of:

list list jobs related to the session.

log show the session history.

abort kill all jobs related to the session.

delete abort the session and delete the session directory from disk.

For instance, if you want to check the status of the main tasks of a session, just run:

$ gsession list SESSION_DIRECTORY
+--------------------------------+---------------------------+-------+----------------
→˓-----------------+
| JobID | Job name | State | Info
→˓ |
+--------------------------------+---------------------------+-------+----------------
→˓-----------------+
| ParallelTaskCollection.1140527 | ParallelTaskCollection-N1 | NEW | NEW at Fri Feb
→˓22 16:39:34 2013 |
+--------------------------------+---------------------------+-------+----------------
→˓-----------------+

This command will only show the top-level tasks, e.g. the main tasks created by the GC3 script. If you want to see all
the tasks related to the session run the command with the option -r:

$ gsession list SESSION_DIRECTORY -r
+---+---------------------------+------------+--
→˓--------------------------------------+
| JobID | Job name | State |
→˓Info |
+---+---------------------------+------------+--
→˓--------------------------------------+
| ParallelTaskCollection.1140527 | ParallelTaskCollection-N1 | NEW |
→˓NEW at Fri Feb 22 16:39:34 2013 |
| WarholizeWorkflow.1140528 | WarholizedWorkflow | RUNNING |
→˓RUNNING at Fri Feb 22 16:39:34 2013 |
| GrayScaleConvertApplication.1140529 | | TERMINATED |
→˓TERMINATED at Fri Feb 22 16:39:25 2013 |
| TricolorizeMultipleImages.1140530 | Warholizer_Parallel | NEW |
→˓ |
| TricolorizeImage.1140531 | TricolorizeImage | NEW |
→˓ | (continues on next page)

48 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

| CreateLutApplication.1140532 | | NEW |
→˓ |
| TricolorizeImage.1140533 | TricolorizeImage | NEW |
→˓ |
| CreateLutApplication.1140534 | | NEW |
→˓ |
| TricolorizeImage.1140535 | TricolorizeImage | NEW |
→˓ |
| CreateLutApplication.1140536 | | NEW |
→˓ |
| TricolorizeImage.1140537 | TricolorizeImage | NEW |
→˓ |
| CreateLutApplication.1140538 | | NEW |
→˓ |
+---+---------------------------+------------+--
→˓--------------------------------------+

To have the full history of the session run gsession log:

$ gsession log SESSION_DIRECTORY
Feb 22 16:39:01 GrayScaleConvertApplication.1140529: Submitting to 'hobbes' at Fri
→˓Feb 22 16:39:01 2013
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: RUNNING
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: SUBMITTED
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: Submitted to 'hobbes' at Fri Feb
→˓22 16:39:08 2013
Feb 22 16:39:08 WarholizeWorkflow.1140528: SUBMITTED
Feb 22 16:39:24 GrayScaleConvertApplication.1140529: TERMINATING
Feb 22 16:39:25 WarholizeWorkflow.1140528: RUNNING
Feb 22 16:39:25 ParallelTaskCollection.1140527: RUNNING
Feb 22 16:39:25 GrayScaleConvertApplication.1140529: Final output downloaded to
→˓'Warholized.lena.jpg'
Feb 22 16:39:25 GrayScaleConvertApplication.1140529: TERMINATED
Feb 22 16:39:34 WarholizeWorkflow.1140528: NEW
Feb 22 16:39:34 ParallelTaskCollection.1140527: NEW
Feb 22 16:39:34 WarholizeWorkflow.1140528: RUNNING

To abort a session, run the gsession abort command:

$ gsession abort SESSION_DIRECTORY

This will kill all the running jobs and retrieve the results of the terminated jobs, but will leave the session directory
untouched. To also delete the session directory, run gsession delete:

$ gsession delete SESSION_DIRECTORY

gstat: monitor the status of submitted jobs

To see the status of all the jobs you have submitted, use the gstat command. Typing:

gstat -s SESSION

will print to the screen a table like the following:

2.1. User Documentation 49

gc3pie Documentation, Release 2.6.8

Job ID Status
====================
job.12 TERMINATED
job.15 SUBMITTED
job.16 RUNNING
job.17 RUNNING
job.23 NEW

Note: If you have never submitted any job, or if you have cleared your job list with the gclean command, then
gstat will print nothing to the screen!

A job can be in one and only one of the following states:

NEW

The job has been created but not yet submitted: it only exists on the local disk.

RUNNING

The job is currently running – there’s nothing to do but wait.

SUBMITTED

The job has been sent to a compute resource for execution – it should change to RUNNING status eventu-
ally.

STOPPED

The job was sent to a remote cluster for execution, but it is stuck there for some unknown reason. There
is no automated procedure in this case: the best thing you can do is to contact the systems administrator
to determine what has happened.

UNKNOWN

Job info is not found, possibly because the remote resource is currently not accessible due to a network
error, a misconfiguration or because the remote resource is not available anymore. When the root cause is
fixed, and the resource is available again, the status of the job should automatically move to another state.

TERMINATED

The job has finished running; now there are three things you can do:

1. Use the gget command to get the command output files back from the remote execution cluster.

2. Use the gclean command to remove this job from the list. After issuing gclean on a job, any
information on it is lost, so be sure you have retrieved any interesting output with gget before!

3. If something went wrong during the execution of the job (it did not complete its execution or -
possibly- it did not even start), you can use the ginfo command to try to debug the problem.

The list of submitted jobs persists from one session to the other: you can log off, shut your computer down, then turn
it on again next day and you will see the same list of jobs.

Note: Completed jobs persist in the gstat list until they are cleared off with the gclean command.

50 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

gtail: peeking at the job output and error report

Once a job has reached RUNNING status (check with gstat), you can also monitor its progress by looking at the last
lines in the job output and error stream.

An example might clarify this: assume you have submitted a long-running computation as job.16 and you know from
gstat that it got into RUNNING state; then to take a peek at what this job is doing, you issue the following command:

gtail job.16

This would produce the following output, from which you can deduce how far GAMESS has progressed into the
computation:

RECOMMEND NRAD ABOVE 50 FOR ZETA'S ABOVE 1E+4

RECOMMEND NRAD ABOVE 75 FOR ZETA'S ABOVE 1E+5

RECOMMEND NRAD ABOVE 125 FOR ZETA'S ABOVE 1E+6

DFT IS SWITCHED OFF, PERFORMING PURE SCF UNTIL SWOFF THRESHOLD IS REACHED.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

1 0 0 -1079.0196780290 -1079.0196780290 0.343816910 1.529879639

* * * INITIATING DIIS PROCEDURE * * *

2 1 0 -1081.1910665431 -2.1713885141 0.056618918 0.105322104

3 2 0 -1081.2658345285 -0.0747679855 0.019565324 0.044813607

By default, gtail only outputs the last 10 lines of a job output/error stream. To see more, use the command line
option -n; for example, to see the last 25 lines of the output, issue the command:

gtail -n 25 job.16

The command gtail is especially useful for long computations: you can see how far a job has gotten and, e.g., cancel
it if it’s gotten stuck into an endless/unproductive loop.

To “keep an eye” over what a job is doing, you can add the -f option to gtail: this will run gtail in “follow”
mode, i.e., gtail will continue to display the contents of the job output and update it as time passes, until you hit
Ctrl+C to interrupt it.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

2.1. User Documentation 51

http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.6.8

gget: retrieve the output of finished jobs

Once a job has reached RUNNING status (check with gstat), you can retrieve its output files with the gget com-
mand. For instance, to download the output files of job.15 you would use:

gget job.15

This command will print out a message like:

Job results successfully retrieved in '/path/to/some/directory'

If you are not running the gget command on your computer, but rather on a shared front-end like ocikbgtw, you can
copy+paste the path within quotes to the sftp command to get the files to your usual workstation. For example, you
can run the following command in a terminal on your computer to get the output files back to your workstation:

sftp ocikbgtw:'/path/to/some/directory'

This will take you to the directory where the output files have been stored.

gclean: remove a completed job from the status list

Jobs persist in the gstat list until they are cleared off; you need to use the gclean command for that.

Just call the gclean command followed by the job identifier job.NNN. For example:

gclean job.23

In normal operation, you can only remove jobs that are in the TERMINATED status; if you want to force gclean to
remove a job that is not in any one of those states, just add -f to the command line.

gresub: re-submit a failed job

In case a job failed for accidental causes (e.g., the site where it was running went unexpectedly down), you can
re-submit it with the gresub command.

Just call gresub followed by the job identifier job.NNN. For example:

gresub job.42

Resubmitting a job that is not in a terminal state (i.e., TERMINATED) results in the job being killed (as with gkill)
before being submitted again. If you are unsure what state a job is in, check it with gstat.

gservers: list available resources

The gservers command prints out information about the configured resources. For each resource, a summary of
the information recorded in the configuration file and the current resource status is printed. For example:

$ gservers
+--+
| smscg |
+==+
| Frontend host name / frontend giis.smscg.ch |
| Access mode / type arc0 |

(continues on next page)

52 Chapter 2. Table of Contents

http://kb.iu.edu/data/akqg.html

gc3pie Documentation, Release 2.6.8

(continued from previous page)

| Authorization name / auth smscg |
| Accessible? / updated 1 |
| Total number of cores / ncores 4000 |
| Total queued jobs / queued 3475 |
| Own queued jobs / user_queued 0 |
| Own running jobs / user_run 0 |
| Max cores per job / max_cores_per_job 256 |
| Max memory per core (MB) / max_memory_per_core 2000 |
| Max walltime per job (minutes) / max_walltime 1440 |
+--+

The meaning of the printed fields is as follows:

• The title of each box is the “resource name”, as you would write it after the -r option to gsub.

• Access mode / type: it is the kind of software that is used for accessing the resource; consult Section Configura-
tion File for more information about resource types.

• Authorization name / auth: this is paired with the Access mode / type, and identifies a section in the configu-
ration file where authentication information for this resource is stored; see Section Configuration File for more
information.

• Accessible? / updated: whether you are currently authorized to access this resource; note that if this turns False
or 0 for resources that you should have access to, then something is wrong either with the state of your system,
or with the resource itself. (The procedure on how to diagnose this is too complex to list here; consult your
friendly systems administrator :-))

• Total number of cores: the total number of cores present on the resource. Note this can vary over time as cluster
nodes go in and out of service: computers break, then are repaired, then break again, etc.

• Total queued jobs: number of jobs (from all users) waiting to be executed on the remote compute cluster.

• Own queued jobs: number of jobs (submitted by you) waiting to be executed on the remote compute cluster.

• Own running jobs: number of jobs (submitted by you) currently executing on the remote compute cluster.

• Max cores per job: the maximum number of cores that you can request for a single computational job on this
resource.

• Max memory per core: maximum amount of memory (per core) that you can request on this resource. The
amount shows the maximum requestable memory in MB.

• Max walltime per job: maximum duration of a computational job on this resource. The amount shows the
maximum time in seconds.

The whole point of GC3Utils is to abstract job submission and management from detailed knowledge of the resources
and their hardware and software configuration, but it is sometimes convenient and sometimes necessary to get into this
level of detail. . .

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command does
just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session TEST1, you would type:

ginfo -s TEST1 job.13

2.1. User Documentation 53

gc3pie Documentation, Release 2.6.8

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running, and
when it was started:

$ ginfo -s XXX job.13
job.13

execution_targets: hera.wsl.ch
log:

SUBMITTED at Wed Mar 7 17:40:07 2012
Submitted to 'smscg' at Wed Mar 7 17:40:07 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/593513311384071771546195
resource_name: smscg
state_last_changed: 1331138407.33
timestamp:

SUBMITTED: 1331138407.33

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -s TEST1 job.13
job.13

cores: 1
download_dir: /home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01
execution_targets: idgc3grid01.uzh.ch
log:

SUBMITTED at Wed Mar 7 15:52:37 2012
Submitted to 'idgc3grid01' at Wed Mar 7 15:52:37 2012
TERMINATING at Wed Mar 7 15:54:52 2012
Final output downloaded to '/home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/

→˓gc3apps/gamess/exam01'
TERMINATED at Wed Mar 7 15:54:53 2012
Execution of gamess terminated normally wed mar 7 15:52:42 2012

lrms_jobid: gsiftp://idgc3grid01.uzh.ch:2811/jobs/2938713311319571678156670
lrms_jobname: exam01
original_exitcode: 0
queue: all.q
resource_name: idgc3grid01
state_last_changed: 1331132093.18
stderr_filename: exam01.out
stdout_filename: exam01.out
timestamp:

SUBMITTED: 1331131957.49
TERMINATED: 1331132093.18
TERMINATING: 1331132092.74

used_cputime: 0
used_memory: 492019
used_walltime: 60

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information:

$ ginfo -c -s TEST1 job.13
job.13

application_tag: gamess
arguments: exam01.inp

(continues on next page)

54 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

changed: False
environment:
executable: /$GAMESS_LOCATION/nggms
execution:

_arc0_state_last_checked: 1331138407.33
_exitcode: None
_signal: None
_state: SUBMITTED
execution_targets: hera.wsl.ch
log:

SUBMITTED at Wed Mar 7 17:40:07 2012
Submitted to 'smscg' at Wed Mar 7 17:40:07 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/593513311384071771546195
resource_name: smscg
state_last_changed: 1331138407.33
timestamp:

SUBMITTED: 1331138407.33
inp_file_path: test/data/exam01.inp
inputs:

file:///home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/test/data/
→˓exam01.inp: exam01.inp

job_name: exam01
jobname: exam01
join: True
output_base_url: None
output_dir: /home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01
outputs:

exam01.dat: file, , exam01.dat, None, None, None, None
exam01.out: file, , exam01.out, None, None, None, None

persistent_id: job.33998
requested_architecture: None
requested_cores: 1
requested_memory: 2
requested_walltime: 8
stderr: None
stdin: None
stdout: exam01.out
tags: APPS/CHEM/GAMESS-2010
verno: None

gselect: select job ids from from a session

The gselect command allows you to select Job IDs from a GC3Pie session that satisfy the selected criteria. This
command is usually used in combination with gresub, gkill, ginfo, gget or gclean, for instance:

$ gselect -l STOPPED | xargs gresub

The output of this command is a list of Job IDs, one per line. The criteria specified by command-line options will be
AND’ed together, i.e., a job must satisfy all of them in order to be selected.

You can select a job based on the following criteria:

JobID regexp

Use option –jobid REGEXP to select jobs whose ID matches the supplied regular expression (case insen-
sitive)

2.1. User Documentation 55

gc3pie Documentation, Release 2.6.8

Job state

Use option –state STATE[,STATE. . .] to select jobs in one of the specified states, for instance to select
jobs in either STOPPED or SUBMITTED state, run gselect –state STOPPED,SUBMITTED.

exit status

You can select jobs that terminated with exit status equal to 0 with –ok option. To select failed jobs instead
(exit status different from 0), use option –failed

Submission time

Use option –submitted-before DATE and –submitted-after DATE to select jobs submitted before or
after a specific date. DATE must be in a human readable format recognized by the parsedatetime
<https://pypi.python.org/pypi/parsedatetime/> module, for instance in 2 hours, yesterday or 10 November
2014, 1pm.

gcloud: manage VMs created by the EC2 backend

The gcloud command allows you to show and manage VMs created by the EC2 backend.

To show a list of VMs currently running on the EC2 resources correctly configured run:

$ gcloud list
====================================
VMs running on EC2 resource `hobbes`
====================================

+------------+---------+---------------+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---------------+-------------+--------------+---------+
| i-0000053e | running | 130.60.193.45 | 1 | ami-00000035 | antonio |
+------------+---------+---------------+-------------+--------------+---------+

This command will show various information, if available, including the number of jobs currently running (or in
TERMINATED state) on those VM, so that you can easily identify if there is a VM which is not used by any of yours
script and you can safely terminate it.

If you want to terminate a VM run the gcloud terminate command. In this case, however, you also have to specify the
name of the resource with the option -r, and the ID of the VM you want to terminate:

$ gcloud terminate -r hobbes i-0000053e

An empty output is a signal that the VM has been terminated.

The EC2 backend keeps track of all the VM it created, so that if a VM is not needed anymore it is able to terminate
it automatically. However, sometimes you may need to keep a VM up&running and thus you need to tell the EC2
backend to ignore that VM.

This is possible with the gcloud forget command. You must supply the correct resource name with -r
RESOURCE_NAME and a valid VM ID, and if the command succeeds then the VM will never be used by the EC2
backend. Please note also that after running gcloud forget, the VM will not be shown in the output of gcloud list.

The following example will explain the behavior:

$ gcloud list -r hobbes

====================================
VMs running on EC2 resource `hobbes`

(continues on next page)

56 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

====================================

+------------+---------+---------------+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---------------+-------------+--------------+---------+
| i-00000540 | pending | 130.60.193.45 | N/A | ami-00000035 | antonio |
+------------+---------+---------------+-------------+--------------+---------+

then we run gcloud forget:

$ gcloud forget -r hobbes i-00000540

and we run again gcloud list:

$ gcloud list -r hobbes

====================================
VMs running on EC2 resource `hobbes`
====================================

no known VMs are currently running on this resource.

You can also create a new VM using the default settings using the gcloud run command. In this case too you have to
specify the -r command line option. The output of this command contains some basic information about the created
VM:

$ gcloud run -r hobbes
+------------+---------+---+-------------+--
→˓------------+---------+
| id | state | public ip | Nr. of jobs |
→˓ image id | keypair |
+------------+---------+---+-------------+--
→˓------------+---------+
| i-00000541 | pending | server-4e68ebc4-ea52-45ff-82d0-79699300b323 | N/A |
→˓ami-00000035 | antonio |
+------------+---------+---+-------------+--
→˓------------+---------+

Please note that while the VM is still in pending state, the value of the public ip field may be meaningless. A successive
run of gcloud list should show you the correct public ip.

Troubleshooting GC3Pie

This page lists a number of errors and issues that you might run into, together with their solution. Please use the
GC3Pie mailing list for further help and for any problem not reported here!

Each section covers a different Python error; the section is named after the error name appearing in the last line of the
Python traceback. (See section What is a Python traceback? below)

Contents

• Troubleshooting GC3Pie

– What is a Python traceback?

2.1. User Documentation 57

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.6.8

– Common errors using GC3Pie

* AttributeError: module object has no attribute StringIO

* DistributionNotFound

* ImportError: No module named pstats

* NoResources: Could not initialize any computational resource - please check log and configuration
file.

* ValueError: I/O operation on closed file

– ValueError: Expected version spec in . . .

What is a Python traceback?

A traceback is a long Python error message, detailing the call stack in the code that lead to a specific error condition.

Tracebacks always look like this one (the number of lines printed, the files involved and the actual error message will,
of course, vary):

Traceback (most recent call last):
File "/home/mpackard/gc3pie/bin/gsub", line 9, in <module>
load_entry_point('gc3pie==1.0rc7', 'console_scripts', 'gsub')()

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/
→˓gc3utils/frontend.py", line 137, in main

import gc3utils.commands
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/
→˓gc3utils/commands.py", line 31, in <module>

import cli.app
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/
→˓app.py", line 37, in <module>

from cli.util import ifelse, ismethodof
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/
→˓util.py", line 28, in <module>

BaseStringIO = StringIO.StringIO
AttributeError: 'module' object has no attribute 'StringIO'

Let’s analyize how a traceback is formed, top to bottom.

A traceback is always started by the line:

Traceback (most recent call last):

Then follow a number of line pairs like this one:

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/
→˓gc3utils/frontend.py", line 137, in main
import gc3utils.commands

The first line shows the file name and the line number where the program stopped; the second line displays the
instruction that Python was executing when the error occurred. We shall always omit this part of the traceback in the
listings below.

Finally, the traceback ends with the error message on the last line:

AttributeError: 'module' object has no attribute 'StringIO'

58 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Just look up this error message in the section headers below; if you cannot find any relevant section, please write to
the GC3Pie mailing list for help.

Common errors using GC3Pie

This section section lists Python errors that may happen when using GC3Pie; each section is named after the error
name appearing in the last line of the Python traceback. (See section What is a Python traceback? above.)

If you get an error that is not listed here, please get in touch via the GC3Pie mailing list.

AttributeError: module object has no attribute StringIO

This error:

Traceback (most recent call last):
...
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/
→˓util.py",
line 28, in <module>

BaseStringIO = StringIO.StringIO
AttributeError: 'module' object has no attribute 'StringIO'

is due to a conflicts of the pyCLI library (prior to version 2.0.3) and the Debian/Ubuntu package *python-stats*

There are three ways to get rid of the error:

1. Uninstall the *python-stats* package <python-stats> (run the command apt-get remove
python-stats as user root)

2. Upgrade pyCLI to version 2.0.3 at least.

3. Upgrade GC3Pie, which will force an upgrade of pyCLI.

DistributionNotFound

If you get this error:

Traceback (most recent call last):
...

pkg_resources.DistributionNotFound: gc3pie==1.0rc2

It usually means that you didn’t run source ../bin/activate; ./setup.py develop when upgrading
GC3Pie.

Please re-do the steps in the GC3Pie Upgrade instructions to fix the error.

ImportError: No module named pstats

This error only occurs on Debian and Ubuntu GNU/Linux:

Traceback (most recent call last):
File ".../pyCLI-2.0.2-py2.6.egg/cli/util.py", line 19, in <module>

import pstats
ImportError: No module named pstats

2.1. User Documentation 59

mailto:gc3pie@googlegroups.com
mailto:gc3pie@googlegroups.com
http://pypi.python.org/pypi/pyCLI

gc3pie Documentation, Release 2.6.8

To solve the issue: install the *python-profiler* package <python-profiler>:

apt-get install python-profiler # as `root` user

NoResources: Could not initialize any computational resource - please check log and configuration
file.

This error:

Traceback (most recent call last):
...
File ".../src/gc3libs/core.py", line 150, in submit
raise gc3libs.exceptions.NoResources("Could not initialize any computational

→˓resource"
gc3libs.exceptions.NoResources: Could not initialize any computational resource -
→˓please check log and configuration file.

can have two different causes:

1. You didn’t create a configuration file, or you did not list any resource in it.

2. Some other error prevented the resources from being initialized, or the configuration file from being properly
read.

ValueError: I/O operation on closed file

Sample error traceback (may be repeated multiple times over):

Traceback (most recent call last):
File "/usr/lib/python2.5/logging/__init__.py", line 750, in emit
self.stream.write(fs % msg)

ValueError: I/O operation on closed file

This is discussed in Issue 182; a fix have been committed to release 1.0, so if you are seeing this error, you are running
a pre-release version of GC3Pie and should Upgrade.

ValueError: Expected version spec in . . .

When trying to install GC3Pie with pip install, you get a long error report that ends with this Python traceback:

Traceback (most recent call last):
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/basecommand.py", line 232,

→˓in main
status = self.run(options, args)

File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/commands/install.py", line
→˓339, in run

requirement_set.prepare_files(finder)
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/req/req_set.py", line 436,

→˓in prepare_files
req_to_install.extras):

File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__
→˓init__.py", line 2496, in requires

dm = self._dep_map
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__

→˓init__.py", line 2491, in _dep_map (continues on next page)

60 Chapter 2. Table of Contents

https://github.com/uzh/gc3pie/issues/182

gc3pie Documentation, Release 2.6.8

(continued from previous page)

dm.setdefault(extra,[]).extend(parse_requirements(reqs))
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__

→˓init__.py", line 2820, in parse_requirements
"version spec")

File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__
→˓init__.py", line 2785, in scan_list

raise ValueError(msg, line, "at", line[p:])
ValueError: ('Expected version spec in', 'python-novaclient;python_version>="2.7"',
→˓'at', ';python_version>="2.7"')

This means that the pip` command is too old to properly parse `Python environment
markers <https://www.python.org/dev/peps/pep-0508/>`_; ``pip version 8.1.2 is the first one
known to work well.

To fix the issue, please upgrade pip to (at least) version 8.1.2:

pip install --upgrade 'pip>=8.1.2'

User-visible changes across releases

This is a list of user-visible changes worth mentioning. In each new release, items are added to the top of
the file and identify the version they pertain to.

Contents

• User-visible changes across releases

– GC3Pie 2.6

* Important changes

* Bug fixes

– GC3Pie 2.5

* New features

* Incompatible changes

– GC3Pie 2.4

* New features

– GC3Pie 2.3

* Incompatible changes

* New features

* Important bug fixes

– GC3Pie 2.2

* New features

* Changes to command-line utilities

* Important bug fixes

– GC3Pie 2.1

2.1. User Documentation 61

gc3pie Documentation, Release 2.6.8

* New features and incompatible changes

* Changes to command-line utilities

– GC3Pie 2.0

* New features and incompatible changes

* Configuration file changes

* Changes to command-line utilities

* API changes

– GC3Pie 1.0

* Configuration file changes

* Command-line utilities changes

– GC3Pie 0.10

GC3Pie 2.6

GC3Pie 2.6.0 introduces compatibility with Python 3.5+. The changes for this are rather extensive, but lucklily mostly
confined to GC3Pie internals, so users of the library should not notice.

Warning: This release can introduce a few backwards-incompatible changes in the format for persisting tasks in
files and databases (see Important changes below). Be sure to have all your currently-running sessions done before
you upgrade!

This release depends on a few new external packages; if you’re upgrading from earlier sources, be sure to re-run pip
install . in the GC3Pie source directory; no such additional step is needed if you’re installing from PyPI with pip
install gc3pie or using GC3Pie’s own install.py script.

Important changes

• Python 3.5+ is now fully supported and tested!

• The on-disk format for saving jobs might have changed incompatibly in some cases: a few internal classes have
completely changed their inheritance hierarchy so Python’s pickle might not be able to read them back.

• GC3Pie now defaults to using “unicode” strings everywhere, but will make a best attempt at converting param-
eters passed as byte strings:

– command-line arguments and paths for I/O need to be converted using the locale’s own encoding/charset
and revert to mapping byte strings to Unicode code points by keeping the numeric value of bytes (instead
of the textual / glyph value) if the former attempt has failed

– output from commands (e.g., when interacting with a batch-queuing system): we assume that programs
are complying with the locale-defined encoding and use the locale’s own encoding to convert the output
into a unicode text string.

• Minor (internal) API changes:

– class gc3libs.Default is now a separate module gc3libs.default.

– a few unused utility methods have been removed from module gc3libs.utils.

62 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Bug fixes

• SLURM: ignore extraneous lines in squeue output.

• LSF: If accounting command name contains the string bjobs, parse its output like bjobs’.

GC3Pie 2.5

New features

• New SessionBasedDaemon and accompanying “Inbox” classes to implement scripts that automatically
detach themselves into background and react to events in configurable sources (filesystem, database, S3/SWIFT
storage).

• Dropping cloud infrastructure support in Python 2.6; if you run GC3Pie on Python 2.6, you will only be able to
run tasks on the “localhost” resource, or on any of the supported batch-queuing systems.

• Terminal log output is now colorized according to message level! (Thanks to Adrian Etter for suggesting this
feature.)

Incompatible changes

• Old-style sessions are not supported any more. (This should not be a problem, as they have been automatically
converted to “new-style” since years now. In the unlikely case you still have an old-style session directory on
disk, just run any session command from version 2.4 and it will convert the format automatically.)

GC3Pie 2.4

New features

• The environment variable GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL can be set to yes or 1 to
cause GC3Pie to abort if any errors occur while initializing the configured resources. The default behavior of
GC3Pie is instead to keep running until there is at least one resource that can be used.

• A resource is now automatically disabled if an unrecoverable error occurs during its use.

GC3Pie 2.3

Incompatible changes

• The ARC backends and supporting code have been removed: it is no longer possible to use GC3Pie to submit
tasks to an ARC job manager.

• The environment variable GC3PIE_NO_CATCH_ERRORS now can specify a list of patterns to selectively unig-
nore unexpected/generic errors in the code. As this feature should only be used in debugging code, we allow
ourselves to break backwards compatibility.

• The cloud and mathematics libraries are no longer installed by default with pip install gc3pie – please
use:

pip install gc3pie[openstack,ec2,optimizer]

2.1. User Documentation 63

gc3pie Documentation, Release 2.6.8

to install support for all optional backends and libraries.

• The gc3libs.utils.ifelse function was removed in favor of Python’s ternary operator.

New features

• New task collection DependentTaskCollection to run a collection of tasks with given pre/post depen-
dencies across them.

• GC3Pie will now parse and obey the Port, Identity, User, ConnectionTimeout, and
ProxyCommand options from the SSH config file. Location of an alternate configuration file to use with
GC3Pie can be set in any [auth/*] section of type SSH; see the Configuration File section for details. Thanks
to Niko Eherenfeuchter and Karandash8 for feature requests and preliminary implementations.

• Application prologue and epilogue scripts can now be embedded in the GC3Pie configuration file, or referenced
by file name.

• New selection options have been added to the gselect: select job ids from from a session command.

• gc3libs.Configuration will now raise different exceptions depending on whether no files could be read
(NoAccessibleConfigurationFile) or could not be parsed (NoValidConfigurationFile).

Important bug fixes

• Shell metacharacters are now allowed in Application arguments. Each argument string is now properly quoted
before passing it to the execution layer.

• LSF backend updated to work with both bjobs and bacct for accounting, or to parse information provided in the
final output file as a last resort.

• All backends should now set a Task’s returncode and exitcode values according to the documented meaning.
Thanks to Y. Yakimovitch for reporting the issue.

GC3Pie 2.2

New features

• New openstack backend for running jobs on ephemeral VMs on OpenStack-compatible IaaS cloud systems.
This is preferred over the OpenStack EC2 compatibility layer.

• New configurable scheduler for GC3Pie’s Engine

• Session-based scripts can now snapshot the output of RUNNING jobs at every cycle.

• ARC backends are now deprecated: they will be removed in the next major version of GC3Pie.

• The pbs backend can now handle also Altair’s PBSPro.

Changes to command-line utilities

• gget: New option -A to download output files of all tasks in a session.

• gget: New option -c/--changed-only to only download files that have apparently changed remotely.

• The GC3Apps collection has been enriched with several new applications.

64 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Important bug fixes

• Working directory for remote jobs using the shellcmd backend is now stored in /var/tmp instead of /tmp,
which should allow results to be retrieved even after a reboot of the remote machine.

GC3Pie 2.1

New features and incompatible changes

• GC3Pie now requires Python 2.6 or above to run.

• New ec2 backend for running jobs on ephemeral VMs on EC2-compatible IaaS cloud systems.

• New package gc3libs.optimizer to find local optima of functions that can be computed through a job. Currently
only implements the “Differential Evolution” algorithm, but the framework is generic enough to plug any genetic
algorithm.

• New configuration options prolog_content and epilog_content, to allow execute oneliners before or
after the command without having to create an auxiliary file.

• New resourcedir option for shellcmd resources. This is used to modify the default value for the directory
containing job informations.

Changes to command-line utilities

• New command gcloud to interface with cloud-based VMs that were spawned by GC3Pie to run jobs.

• Table output now uses a different formatting (we use Python’s prettytable package instead of the texttable
package that we were using before, due to Py3 compatibility).

GC3Pie 2.0

New features and incompatible changes

• GC3Pie can now run on MacOSX.

• A session now has a configurable storage location, which can be a directory on the filesystem (FilesystemStore,
the default so far) or can be a table in an SQL database (of any kind supported by SQLAlchemy).

• New ARC1 backend to use ARC resources through the new NorduGrid 1.x library API.

• New backend “subprocess”: execute applications as local processes.

• New backends for running on various batch-queueing systems: SLURM, LSF, PBS.

• Implement recursive upload and download of directories if they are specified in an Application’s input or output
attribute.

• New execution state TERMINATING: task objects are in this state when execution is finished remotely, but the
task output has not yet been retrieved.

• Reorganize documentation and move it to http://gc3pie.readthedocs.org/

• Script logging is now controlled by a single configuration file .gc3/gc3utils.log.conf

• Session-based scripts now print WARNING messages to STDERR by default (previously, only ERROR mes-
sages were logged).

2.1. User Documentation 65

http://gc3pie.readthedocs.org/

gc3pie Documentation, Release 2.6.8

• Add caching to ARC backends, to reduce the number of network queries.

• Use GNU “.~NUMBER~” format for backup directories.

Configuration file changes

• Rename ARC0 resource type to arc0

Changes to command-line utilities

• New gsession command to manage sessions.

• The glist command was renamed to gservers

• The gsub and gnotify commands were removed.

• The PATH tag no longer gets any special treatment in session-based scripts --output processing.

• ginfo: New option --tabular to print information in table format.

• gkill: New option -A/–all to remove all jobs in a session.

• Use the rungms script to execute GAMESS.

API changes

• Module gc3libs.dag has been renamed to gc3libs.workflow.

• API changes in gc3libs.cmdline.SessionBasedScript allow new_tasks() in SessionBasedScript in-
stances to return Task instances instead of quadruples.

• Interpret Application.requested_memory as the total memory for the job.

• the Resource and LRMS objects were merged

• the gc3libs.scheduler module has been removed; its functionality is now incorporated in the
Application class.

• configuration-related code moved into gc3libs.config module

• removed the application registry.

• New package gc3libs.compat to provide 3rd-party functionality that is not present in all supported versions of
Python.

• Implement gc3libs.ANY_OUTPUT to retrieve the full contents of the output directory, whatever it is.

• New RetryableTask class to wrap a task and re-submit it on failure until some specified condition is met.

GC3Pie 1.0

Configuration file changes

• Renamed configuration file to gc3pie.conf: the file gc3utils.conf will no longer be read!

• SGE clusters must now have type = sge in the configuration file (instead of type = ssh-sge)

• All computational resource must have an architecture = ... line; see the ConfigurationFile wiki page
for details

66 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

• Probably more changes than it’s worth to list here: check your configuration against the Configuration File page!

Command-line utilities changes

• GC3Utils and GC3Apps (grosetta/ggamess/etc.) now all accept a -s/--session option for locating the
job storage directory: this allows grouping jobs into folders instead of shoveling them all into ~/.gc3/jobs.

• GC3Apps: replaced option -t/--table with -l/--states. The new option prints a table of submitted jobs
in addition to the summary stats; if a comma-separated list of job states follows the option, only job in those
states are printed.

• Command gstat will now print a summary of the job states if the list is too long to fit on screen; use the -v
option to get the full job listing regardless of its length.

• Command gstat can now print information on jobs in a certain state only; see help text for option --state

• Removed -l option from ginfo; use -v instead.

• GC3Utils: all commands accepting multiple job IDs on the command line, now exit with the number of er-
rors/failures occurred. Since exit codes are practically limited to 7 bits, exit code 126 means that more than 125
failures happened.

GC3Pie 0.10

• First release for public use outside of GC3

2.2 Programmer Documentation

This document is the technical reference for the GC3Libs programming model, aimed at programmers who want to
use GC3Libs to implement computational workflows in Python.

The Programming overview section is the starting point for whoever wants to start developing applications with
GC3Pie. It gives an overview of the main components of the library and how they interact with each other.

The Tutorials section contains documentation that describes in more detail the various components discussed in the
programming overview, as well as many working examples (took from exercises done during the training events) and
the The “Warholize” Workflow Tutorial: a step-by-step tutorial that will show you how to write a complex GC3Pie
workflow.

The GC3Libs programming API section instead contains the API reference of GC3Pie library.

2.2.1 Programming overview

Computational job lifecycle

A computational job (for short: job) is a single run of a non-interactive application. The prototypical example is a run
of GAMESS on a single input file.

The GC3Utils commands support the following workflow:

1. Submit a GAMESS job (with a single input file): ggamess

2. Monitor the status of the submitted job: gstat

3. Retrieve the output of a job once it’s finished: gget

2.2. Programmer Documentation 67

http://www.gc3.uzh.ch/
tutorials/index.html
http://www.msg.ameslab.gov/gamess/
http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.6.8

Usage and some examples on how to use the mentioned commands are provided in the next sections

Managing jobs with GC3Libs

GC3Libs takes an application-oriented approach to asynchronous computing. A generic Application class pro-
vides the basic operations for controlling remote computations and fetching a result; client code should derive special-
ized sub-classes to deal with a particular application, and to perform any application-specific pre- and post-processing.

The generic procedure for performing computations with GC3Libs is the following:

1. Client code creates an instance of an Application sub-class.

2. Asynchronous computation is started by submitting the application object; this associates the application with
an actual (possibly remote) computational job.

3. Client code can monitor the state of the computational job; state handlers are called on the application object as
the state changes.

4. When the job is done, the final output is retrieved and a post-processing method is invoked on the application
object.

At this point, results of the computation are available and can be used by the calling program.

The Application class (and its sub-classes) alow client code to control the above process by:

1. Specifying the characteristics (computer program to run, input/output files, memory/CPU/duration require-
ments, etc.) of the corresponding computational job. This is done by passing suitable values to the
Application constructor. See the Application constructor documentation for a detailed description
of the parameters.

2. Providing methods to control the “life-cycle” of the associated computational job: start, check execution state,
stop, retrieve a snapshot of the output files. There are actually two different interfaces for this, detailed below:

1. A passive interface: a Core or a Engine object is used to start/stop/monitor jobs associated with the
given application. For instance:

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

start the remote computation
g.submit(a)

periodically monitor job execution
g.update_job_state(a)

retrieve output when the job is done
g.fetch_output(a)

The passive interface gives client code full control over the lifecycle of the job, but cannot support some
use cases (e.g., automatic application re-start).

As you can see from the above example, the passive interface is implemented by methods in the Core and
Engine classes (they implement the same interface). See those classes documentation for more details.

2. An active interface: this requires that the Application object be attached to a Core or Engine
instance:

68 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

tell application to use the active interface
a.attach(g)

start the remote computation
a.submit()

periodically monitor job execution
a.update_job_state()

retrieve output when the job is done
a.fetch_output()

With the active interface, application objects can support automated restart and similar use-cases.

When an Engine object is used instead of a Core one, the job life-cycle is automatically managed,
providing a fully asynchronous way of executing computations.

The active interface is implemented by the Task class and all its descendants (including Application).

3. Providing “state transition methods” that are called when a change in the job execution state is detected; those
methods can implement application specific behavior, like restarting the computational job with changed input
if the alloted duration has expired but the computation has not finished. In particular, a postprocess method is
called when the final output of an application is available locally for processing.

The set of “state transition methods” currently implemented by the Application class are: new(),
submitted(), running(), stopped(), terminated() and postprocess(). Each method is
called when the execution state of an application object changes to the corresponding state; see each method’s
documentation for exact information.

In addition, GC3Libs provides collection classes, that expose interfaces 2. and 3. above, allowing one to control a set
of applications as a single whole. Collections can be nested (i.e., a collection can hold a mix of Application and
TaskCollection objects), so that workflows can be implemented by composing collection objects.

Note that the term computational job (or just job, for short) is used here in a quite general sense, to mean any kind
of computation that can happen independently of the main thread of the calling program. GC3Libs currently provide
means to execute a job as a separate process on the same computer, or as a batch job on a remote computational cluster.

Execution model of GC3Libs applications

An Application can be regarded as an abstraction of an independent asynchronous computation, i.e., a GC3Libs’
Application behaves much like an independent UNIX process (but it can actually run on a separate remote computer).
Indeed, GC3Libs’ Application objects mimic the POSIX process model: Application are started by a parent process,
run independently of it, and need to have their final exit code and output reaped by the calling process.

The following table makes the correspondence between POSIX processes and GC3Libs’ Application objects explicit.

os module function Core function purpose
exec Core.submit start new job
kill(. . . , SIGTERM) Core.kill terminate executing job
wait(. . . , WNOHANG) Core.update_job_state get job status

• Core.fetch_output retrieve output

2.2. Programmer Documentation 69

gc3pie Documentation, Release 2.6.8

Note:

1. With GC3Libs, it is not possible to send an arbitrary signal to a running job: jobs can only be started and stopped
(killed).

2. Since POSIX processes are always executed on the local machine, there is no equivalent of the GC3Libs
fetch_output.

Application exit codes

POSIX encodes process termination information in the “return code”, which can be parsed through os.WEXITSTATUS,
os.WIFSIGNALED, os.WTERMSIG and relative library calls.

Likewise, GC3Libs provides each Application object with an execution.returncode attribute, which is a valid
POSIX “return code”. Client code can therefore use os.WEXITSTATUS and relatives to inspect it; convenience at-
tributes execution.signal and execution.exitcode are available for direct access to the parts of the return code. See
Run.returncode() for more information.

However, GC3Libs has to deal with error conditions that are not catered for by the POSIX process model: for instance,
execution of an application may fail because of an error connecting to the remote execution cluster.

To this purpose, GC3Libs encodes information about abnormal job termination using a set of pseudo-signal codes
in a job’s execution.returncode attribute: i.e., if termination of a job is due to some grid/batch system/middleware
error, the job’s os.WIFSIGNALED(app.execution.returncode) will be True and the signal code (as gotten from
os.WTERMSIG(app.execution.returncode)) will be one of those listed in the Run.Signals documentation.

Application execution states

At any given moment, a GC3Libs job is in any one of a set of pre-defined states, listed in the table below. The job state
is always available in the .execution.state instance property of any Application or Task object; see Run.state() for
detailed information.

GC3Libs’
Job state

purpose can change to

NEW Job has not yet been submitted/started (i.e., gsub not called) SUBMITTED (by gsub)
SUBMIT-
TED

Job has been sent to execution resource RUNNING, STOPPED

STOPPED Trap state: job needs manual intervention (either user- or
sysadmin-level) to resume normal execution

TERMINATED (by gkill), SUB-
MITTED (by miracle)

RUNNING Job is executing on remote resource TERMINATED
UN-
KNOWN

Job info not found or lost track of job (e.g., network error or
invalid job ID)

any other state

TERMI-
NATED

Job execution is finished (correctly or not) and will not be re-
sumed

None: final state

When an Application object is first created, its .execution.state attribute is assigned the state NEW. After
a successful start (via Core.submit() or similar), it is transitioned to state SUBMITTED. Further transitions to
RUNNING or STOPPED or TERMINATED state, happen completely independently of the creator program: the
Core.update_job_state() call provides updates on the status of a job. (Somewhat like the POSIX wait(. . . , WNO-
HANG) system call, except that GC3Libs provide explicit RUNNING and STOPPED states, instead of encoding them
into the return value.)

70 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

The STOPPED state is a kind of generic “run time error” state: a job can get into the STOPPED state if its execution
is stopped (e.g., a SIGSTOP is sent to the remote process) or delayed indefinitely (e.g., the remote batch system puts
the job “on hold”). There is no way a job can get out of the STOPPED state automatically: all transitions from the
STOPPED state require manual intervention, either by the submitting user (e.g., cancel the job), or by the remote
systems administrator (e.g., by releasing the hold).

The UNKNOWN state is a temporary error state: whenever GC3Pie is unable to get any information on the job, its
state move to UNKNOWN. It is usually related to a (hopefully temporary) failure while accessing the remote resource,
because of a network error or because the resource is not correctly configured. After the underlying cause of the error
is fixed and GC3Pie is able again to get information on the job, its state will change to the proper state.

The TERMINATED state is the final state of a job: once a job reaches it, it cannot get back to any other state. Jobs
reach TERMINATED state regardless of their exit code, or even if a system failure occurred during remote execution;
actually, jobs can reach the TERMINATED status even if they didn’t run at all!

A job that is not in the NEW or TERMINATED state is said to be a “live” job.

Computational job specification

One of the purposes of GC3Libs is to provide an abstraction layer that frees client code from dealing with the de-
tails of job execution on a possibly remote cluster. For this to work, it necessary to specify job characteristics and
requirements, so that the GC3Libs scheduler can select an appropriate computational resource for executing the job.

GC3Libs Application provide a way to describe computational job characteristics (program to run, input and output
files, memory/duration requirements, etc.) loosely patterned after ARC’s xRSL language.

The description of the computational job is done through keyword parameters to the Application constructor,
which see for details. Changes in the job characteristics after an Application object has been constructed are not
currently supported.

2.2.2 GC3Pie programming tutorials

Contents

• GC3Pie programming tutorials

– Implementing scientific workflows with GC3Pie

– A bottom-up introduction to programming with GC3Pie

– The “Warholize” Workflow Tutorial

– Example scripts

Implementing scientific workflows with GC3Pie

This is the course material prepared for the “GC3Pie for Programmers” training, held at the University of Zurich for
the first time on July 11-14, 2016. (The slides presented here are revised at each course re-run.)

The course aims at showing how to implement patterns commonly seen in scientific computational workflows using
Python and GC3Pie, and provide users with enough knowledge of the tools available in GC3Pie to extend and adapt
the examples provided.

Introduction to the training

2.2. Programmer Documentation 71

http://www.nordugrid.org/documents/xrsl.pdf
http://www.s3it.uzh.ch/en/scienceit/support/training/gc3pie/programmers.html
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part00.pdf

gc3pie Documentation, Release 2.6.8

A presentation of the training material and outline of the course. Probably not much useful unless you’re
actually sitting in class.

Overview of GC3Pie use cases

A quick overview of the kind of computational use cases that GC3Pie can easily solve.

GC3Pie basics

The basics needed to write simple GC3Pie scripts: the minimal session-based script scaffolding, and the
properties and features of the Application object.

Useful debugging commands

Recall a few GC3Pie utilities that are especially useful when debugging code.

Customizing command-line processing

How to set up command-line argument and option processing in GC3Pie’s SessionBasedScript

Application requirements

How to specify running requirements for Application tasks, e.g., how much memory is needed to run.

Application control and post-processing

How to check and react on the termination status of a GC3Pie Task/Application.

Introduction to workflows

A worked-out example of a many-step workflow.

Running tasks in a sequence

How to run tasks in sequence: basic usage of SequentialTaskCollection and
StagedTaskCollection

Running tasks in parallel

How to run independent tasks in parallel: the ParallelTaskCollection

Automated construction of task dependency graphs

How to use the DependentTaskCollection for automated arrangement of tasks given their depen-
dencies.

Dynamic and Unbounded Sequences of Tasks

How to construct SequentialTaskCollection classes that change the sequence of tasks while
being run.

A bottom-up introduction to programming with GC3Pie

This is the course material made for the GC3Pie 2012 Training event held at the University of Zurich on October 1-2,
2012.

The presentation starts with low-level concepts (e.g., the Application and how to do manual task submission) and
then gradually introduces more sophisticated tools (e.g., the SessionBasedScript and workflows).

This order of introducing concepts will likely appeal most to those already familiar with batch-computing and grid
computing, as it provides an immediate map of the job submission and monitoring commands to GC3Pie equivalents.

Introduction to GC3Pie

Introduction to the software: what is GC3Pie, what is it for, and an overview of its features for writing
high-throughput computing scripts.

72 Chapter 2. Table of Contents

https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part01.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part02.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part03.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part04.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part05.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part06.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part07.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part08.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part09.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part10.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part11.pdf
https://www.gc3.uzh.ch/edu/gc3pie2012/
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part01.pdf

gc3pie Documentation, Release 2.6.8

Basic GC3Pie programming

The Application class, the smallest building block of GC3Pie. Introduction to the concept of Job, states
of an application and to the Core class.

Application requirements

How to define extra requirements for an application, such as the minimum amount of memory it will use,
the number of cores needed or the architecture of the CPUs.

Managing applications: the SessionBasedScript class

Introduction to the highest-level interface to build applications with GC3Pie, the SessionBasedScript.
Information on how to create simple scripts that take care of the execution of your applications, from
submission to getting back the final results.

The GC3Utils commands

Low-level tools to aid debugging the scripts.

Introduction to Workflows with GC3Pie

Using a practical example (the The “Warholize” Workflow Tutorial) we show how workflows are imple-
mented with GC3Pie. The following slides will cover in more details the single steps needed to produce
a complex workflow.

ParallelTaskCollection

Description of the ParallelTaskCollection class, used to run tasks in parallel.

StagedTaskCollection

Description of the StagedTaskCollection class, used to run a sequence of a fixed number of jobs.

SequentialTaskCollection

Description of the SequentialTaskCollection class, used to run a sequence of jobs that can be altered during
runtime.

The “Warholize” Workflow Tutorial

In this tutorial we show how to use the GC3Pie libraries in order to build a command line script which runs a complex
workflow with both parallelly- and sequentially-executing tasks.

The tutorial itself contains the complete source code of the application (see Literate Programming on Wikipedia), so
that you will be able to test/modify it and produce a working warholize.py script by downloading the pylit.
py:file: script from the PyLit Homepage and running the following command on the docs/programmers/
tutorials/warholize/warholize.rst file, from within the source tree of GC3Pie:

$./pylit warholize.rst warholize.py

Introduction

Warholize is a GC3Pie demo application to produce, from a generic image picture, a new picture like the famous
Warhol’s work: Marylin. The script uses the powerful ImageMagick set of tools (at least version 6.3.5-7). This
tutorial will assume that both ImageMagick and GC3Pie are already installed and configured.

In order to produce a similar image we have to do a series of transformations on the picture:

1) convert the original image to grayscale.

2.2. Programmer Documentation 73

https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part03.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part04.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part05.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part06.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part08.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part09.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part10.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part11.pdf
http://en.wikipedia.org/wiki/Literate_programming
https://github.com/gmilde/PyLit
http://artobserved.com/artists/andy-warhol/
http://www.imagemagick.org/

gc3pie Documentation, Release 2.6.8

2) colorize the grayscale image using three different colors each time, based on the gray levels. We may, for
instance, make all pixels with luminosity between 0-33% in red, pixels between 34-66% in yellow and pixels
between 67% and 100% in green.

To do that, we first have to:

a) create a Color Lookup Table (LUT) using a combination of three randomly chosen colors

b) apply the LUT to the grayscale image

3) Finally, we can merge together all the colorized images and produce our warholized image.

Clearly, step 2) depends on the step 1), and 3) depends on 2), so we basically have a sequence of tasks, but since step
2) need to create N different independent images, we can parallelize this step.

Fig. 1: Workflow of the warholize script

From top to bottom

We will write our script starting from the top and will descend to the bottom, from the command line script, to the
workflow and finally to the single execution units which compose the application.

The script

The SessionBasedScript class in the gc3libs.cmdline module is used to create a generic script. It already have all what
is needed to read gc3pie configuration files, manage resources, schedule jobs etc. The only missing thing is, well, your
application!

74 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Let’s start by creating a new empty file and importing some basic modules:

import os
import gc3libs
from gc3libs.cmdline import SessionBasedScript

we then create a class which inherits from SessionBasedScript (in GC3Pie, most of the customizations are done by
inheriting from a more generic class and overriding the __init__ method and possibly others):

class WarholizeScript(SessionBasedScript):
"""
Demo script to create a `Warholized` version of an image.
"""
version='1.0'

Please note that you must either write a small docstring, or add a description attribute. These values are used when the
script is called with options --help or --version, which are automatically added by GC3Pie.

The way we want to use our script is straightforward:

$ warholize.py inputfile [inputfiles ...]

and this will create a directory Warholized.<inputfile> in which there will be a file called
warhol_<inputfile> containing the desired warholized image (and a lot of temporary files, at least for now).

But we may want to add some additional options to the script, in order to decide how many colorized pictures the
warholized image will be made of, or if we want to resize the image. SessionBasedScript uses the PyCLI module
which is, in turn, a wrapper around standard argparse (or optparse for older pythons) module. To customize the script
you may define a setup_options method and put in there some calls to SessionBasedScript.add_param(), which is
inherited from cli.app.CommandLineApp:

def setup_options(self):
self.add_param('--copies', default=4, type=int,

help="Number of copyes (Default:4). It has to be a perfect square!
→˓")

In this example we will accept a --copies option to define how many colorized copies the final picture will be made
of. Please refer to the documentation of the PyCLI module for details on the syntax of the add_param method.

The heart of the script is, however, the new_tasks method, which will be called to create the initial tasks of the scripts.
In our case it will be something like:

def new_tasks(self, extra):
gc3libs.log.info("Creating main sequential task")
for (i, input_file) in enumerate(self.params.args):

extra_args = extra.copy()
extra_args['output_dir'] = 'Warholized.%s' % os.path.basename(input_file)
yield WarholizeWorkflow(input_file,

self.params.copies,

**extra_args)

new_tasks is used as a generator (but it could return a list as well). Each yielded object is a task. In GC3Pie, a
task is either a single application or a complex workflow, and rapresents an execution unit. In our case we create a
WarholizeWorkflow task which is the workflow described before.

In our case we yield a different WarholizeWorkflow task for each input file. These tasks will run in parallel.

Please note that we are using the gc3libs.log module to log informations about the execution. This module works
like the logging module and has methods like error, warning, info or debug, but its logging level is automatically

2.2. Programmer Documentation 75

http://packages.python.org/pyCLI/
http://docs.python.org/library/argparse.html
http://docs.python.org/library/optparse.html
http://packages.python.org/pyCLI/
http://docs.python.org/library/logging.html

gc3pie Documentation, Release 2.6.8

configured by SessionBasedScript’s constructor. This way you can increase the verbosity of your script by simply
adding -v options from the command line.

The workflows

Main sequential workflow

The module gc3libs.workflow contains two main objects: SequentialTaskCollection and ParallelTaskCollection. They
execute tasks in serial and in parallel, respectively. We will use both of them to create our workflow; the first one,
WarholizeWorkflow, is a sequential task, therefore we have to inherit from SequentialTaskCollection and customize its
__init__ method:

from gc3libs.workflow import SequentialTaskCollection, ParallelTaskCollection
import math
from gc3libs import Run

class WarholizeWorkflow(SequentialTaskCollection):
"""
Main workflow.
"""

def __init__(self, input_image, copies, **extra_args):
self.input_image = input_image
self.output_image = "warhol_%s" % os.path.basename(input_image)

gc3libs.log.info(
"Producing a warholized version of input file %s "
"and store it in %s" % (input_image, self.output_image))

self.output_dir = os.path.relpath(extra_args.get('output_dir'))

self.copies = copies

Check that copies is a perfect square
if math.sqrt(self.copies) != int(math.sqrt(self.copies)):

raise gc3libs.exceptions.InvalidArgument(
"`copies` argument must be a perfect square.")

self.jobname = extra_args.get('jobname', 'WarholizedWorkflow')
self.grayscaled_image = "grayscaled_%s" % os.path.basename(self.input_image)

Up to now we just parsed the arguments. The following lines, instead, create the first task that we want to execute. By
now, we can create only the first one, GrayScaleConvertApplication, which will produce a grayscale image from the
input file:

self.tasks = [
GrayScaleConvertApplication(

self.input_image, self.grayscaled_image, self.output_dir,
self.output_dir),

]

Finally, we call the parent’s constructor.:

SequentialTaskCollection.__init__(
self, self.tasks)

76 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

This will create the initial task list, but we have to run also step 2 and 3, and this is done by creating a next method.
This method will be called after all the tasks in self.tasks are finished. We cannot create all the jobs at once because
we don’t have all the needed input files yet. Please note that by creating the tasks in the next method you could decide
at runtime which tasks to run next and what arguments we may want to give to them.

In our case, however, the next method is quite simple:

def next(self, iteration):
last = self.tasks[-1]

if iteration == 0:
first time we got called. We have the grayscaled image,
we have to run the Tricolorize task.
self.add(TricolorizeMultipleImages(

os.path.join(self.output_dir, self.grayscaled_image),
self.copies, self.output_dir))

return Run.State.RUNNING
elif iteration == 1:

second time, we already have the colorized images, we
have to merge them together.
self.add(MergeImagesApplication(

os.path.join(self.output_dir, self.grayscaled_image),
last.warhol_dir,
self.output_image))

return Run.State.RUNNING
else:

self.execution.returncode = last.execution.returncode
return Run.State.TERMINATED

At each iteration, we call self.add() to add an instance of a task-like class (gc3libs.Application,
gc3libs.workflow.ParallelTaskCollection or gc3libs.workflow.SequentialTaskCollection, in our case) to complete the
next step, and we return the current state, which will be gc3libs.Run.State.RUNNING unless we have finished the
computation.

Step one: convert to grayscale

GrayScaleConvertApplication is the application responsible to convert to grayscale the input image. The command
we want to execute is:

$ convert -colorspace gray <input_image> grayscaled_<input_image>

To create a generic application we create a class which inherit from gc3libs.Application and we usually only need to
customize the __init__ method:

An useful function to copy files
from shutil import copyfile

class GrayScaleConvertApplication(gc3libs.Application):
def __init__(self, input_image, grayscaled_image, output_dir, warhol_dir):

self.warhol_dir = warhol_dir
self.grayscaled_image = grayscaled_image

arguments = [
'convert',
os.path.basename(input_image),
'-colorspace',

(continues on next page)

2.2. Programmer Documentation 77

gc3pie Documentation, Release 2.6.8

(continued from previous page)

'gray',
]

gc3libs.log.info(
"Craeting GrayScale convert application from file %s"
"to file %s" % (input_image, grayscaled_image))

gc3libs.Application.__init__(
self,
arguments = arguments + [grayscaled_image],
inputs = [input_image],
outputs = [grayscaled_image, 'stderr.txt', 'stdout.txt'],
output_dir = output_dir,
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Creating a gc3libs.Application is straigthforward: you just call the constructor with the executable, the arguments, and
the input/output files you will need.

If you don’t specify the output_dir directory, gc3pie libraries will create one starting from the class name. If the
output directory exists already, the old one will be renamed.

To do any kind of post processing you can define a terminate method for your application. It will be called after your
application will terminate. In our case we want to copy the gray scale version of the image to the warhol_dir, so that
it will be easily reachable by all other applications:

def terminated(self):
"""Move grayscale image to the main output dir"""
copyfile(

os.path.join(self.output_dir, self.grayscaled_image),
self.warhol_dir)

Step two: parallel workflow to create colorized images

The TricolorizeMultipleImages is responsible to create multiple versions of the grayscale image with different
coloration chosen randomly from a list of available colors. It does it by running multiple instance of Tricol-
orizeImage with different arguments. Since we want to run the various colorization in parallel, it inherits from
gc3libs.workflow.ParallelTaskCollection class. Like we did for GrayScaleConvertApplication, we only need to cus-
tomize the constructor __init__, creating the various subtasks we want to run:

import itertools
import random

class TricolorizeMultipleImages(ParallelTaskCollection):
colors = ['yellow', 'blue', 'red', 'pink', 'orchid',

'indigo', 'navy', 'turquoise1', 'SeaGreen', 'gold',
'orange', 'magenta']

def __init__(self, grayscaled_image, copies, output_dir):
gc3libs.log.info(

"TricolorizeMultipleImages for %d copies run" % copies)
self.jobname = "Warholizer_Parallel"
ncolors = 3
XXX Why I have to use basename???

(continues on next page)

78 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

self.output_dir = os.path.join(
os.path.basename(output_dir), 'tricolorize')

self.warhol_dir = output_dir

Compute a unique sequence of random combination of
colors. Please note that we can have a maximum of N!/3! if N
is len(colors)
assert copies <= math.factorial(len(self.colors)) / math.factorial(ncolors)

combinations = [i for i in itertools.combinations(self.colors, ncolors)]
combinations = random.sample(combinations, copies)

Create all the single tasks
self.tasks = []
for i, colors in enumerate(combinations):

self.tasks.append(TricolorizeImage(
os.path.relpath(grayscaled_image),
"%s.%d" % (self.output_dir, i),
"%s.%d" % (grayscaled_image, i),
colors,
self.warhol_dir))

ParallelTaskCollection.__init__(self, self.tasks)

The main loop will fill the self.tasks list with various TricolorizedImage tasks, each one with an unique combination
of three colors to use to generate the colorized image. The GC3Pie framework will then run these tasks in parallel, on
any available resource.

The TricolorizedImage class is indeed a SequentialTaskCollection, since it has to generate the LUT first, and then apply
it to the grayscale image. We already saw how to create a SequentialTaskCollection: we modify the constructor in
order to add the first job (CreateLutApplication), and the next method will take care of running the ApplyLutApplication
application on the output of the first job:

class TricolorizeImage(SequentialTaskCollection):
"""
Sequential workflow to produce a `tricolorized` version of a
grayscale image
"""
def __init__(self, grayscaled_image, output_dir, output_file,

colors, warhol_dir):
self.grayscaled_image = grayscaled_image
self.output_dir = output_dir
self.warhol_dir = warhol_dir
self.jobname = 'TricolorizeImage'
self.output_file = output_file

if not os.path.isdir(output_dir):
os.mkdir(output_dir)

gc3libs.log.info(
"Tricolorize image %s to %s" % (

self.grayscaled_image, self.output_file))

self.tasks = [
CreateLutApplication(

self.grayscaled_image,

(continues on next page)

2.2. Programmer Documentation 79

gc3pie Documentation, Release 2.6.8

(continued from previous page)

"%s.miff" % self.grayscaled_image,
self.output_dir,
colors, self.warhol_dir),

]

SequentialTaskCollection.__init__(self, self.tasks)

def next(self, iteration):
last = self.tasks[-1]
if iteration == 0:

First time we got called. The LUT has been created, we
have to apply it to the grayscale image
self.add(ApplyLutApplication(

self.grayscaled_image,
os.path.join(last.output_dir, last.lutfile),
os.path.basename(self.output_file),
self.output_dir, self.warhol_dir))

return Run.State.RUNNING
else:

self.execution.returncode = last.execution.returncode
return Run.State.TERMINATED

The CreateLutApplication is again an application which inherits from gc3libs.Application. The command we want to
execute is something like:

$ convert -size 1x1 xc:<color1> xc:<color2> xc:<color3> +append -resize 256x1!
→˓<output_file.miff>

This will basically create an image 256x1 pixels big, made of a gradient using all the listed colors. The code will look
like:

class CreateLutApplication(gc3libs.Application):
"""Create the LUT for the image using 3 colors picked randomly
from CreateLutApplication.colors"""

def __init__(self, input_image, output_file, output_dir, colors, working_dir):
self.lutfile = os.path.basename(output_file)
self.working_dir = working_dir
gc3libs.log.info("Creating lut file %s from %s using "

"colors: %s" % (
self.lutfile, input_image, str.join(", ", colors)))

gc3libs.Application.__init__(
self,
arguments = [

'convert',
'-size',
'1x1'] + [
"xc:%s" % color for color in colors] + [
'+append',
'-resize',
'256x1!',
self.lutfile,
],

inputs = [input_image],
outputs = [self.lutfile, 'stdout.txt', 'stderr.txt'],
output_dir = output_dir + '.createlut',

(continues on next page)

80 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Similarly, the ApplyLutApplication application will run the following command:

$ convert grayscaled_<input_image> <lutfile.N.miff> -clut grayscaled_<input_image>.
→˓<N>

This command will apply the LUT to the grayscaled image: it will modify the grayscaled image by coloring a generic
pixel with a luminosity value of n (which will be an integer value from 0 to 255, of course) with the color at position
n in the LUT image (actually, n+1). Each ApplyLutApplication will save the resulting image to a file named as
grayscaled_<input_image>.<N>.

The class will look like:

class ApplyLutApplication(gc3libs.Application):
"""Apply the LUT computed by `CreateLutApplication` to
`image_file`"""

def __init__(self, input_image, lutfile, output_file, output_dir, working_dir):

gc3libs.log.info("Applying lut file %s to %s" % (lutfile, input_image))
self.working_dir = working_dir
self.output_file = output_file

gc3libs.Application.__init__(
self,
arguments = [

'convert',
os.path.basename(input_image),
os.path.basename(lutfile),
'-clut',
output_file,
],

inputs = [input_image, lutfile],
outputs = [output_file, 'stdout.txt', 'stderr.txt'],
output_dir = output_dir + '.applylut',
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

The terminated method:

def terminated(self):
"""Copy colorized image to the output dir"""
copyfile(

os.path.join(self.output_dir, self.output_file),
self.working_dir)

will copy the colorized image file in the top level directory, so that it will be easier for the last application to find all
the needed files.

2.2. Programmer Documentation 81

gc3pie Documentation, Release 2.6.8

Step three: merge all them together

At this point we will have in the main output directory a bunch of files named after
grayscaled_<input_image>.N with N a sequential integer and <input_image> the name of the
original image. The last application, MergeImagesApplication, will produce a warhol_<input_image> image
by merging all of them using the command:

$ montage grayscaled_<input_image>.* -tile 3x3 -geometry +5+5 -background white
→˓warholized_<input_image>

Now it should be easy to write such application:

import re

class MergeImagesApplication(gc3libs.Application):
def __init__(self, grayscaled_image, input_dir, output_file):

ifile_regexp = re.compile(
"%s.[0-9]+" % os.path.basename(grayscaled_image))

input_files = [
os.path.join(input_dir, fname) for fname in os.listdir(input_dir)
if ifile_regexp.match(fname)]

input_filenames = [os.path.basename(i) for i in input_files]
gc3libs.log.info("MergeImages initialized")
self.input_dir = input_dir
self.output_file = output_file

tile = math.sqrt(len(input_files))
if tile != int(tile):

gc3libs.log.error(
"We would expect to have a perfect square"
"of images to merge, but we have %d instead" % len(input_files))

raise gc3libs.exceptions.InvalidArgument(
"We would expect to have a perfect square of images to merge, but we

→˓have %d instead" % len(input_files))

gc3libs.Application.__init__(
self,
arguments = ['montage'] + input_filenames + [

'-tile',
'%dx%d' % (tile, tile),
'-geometry',
'+5+5',
'-background',
'white',
output_file,
],

inputs = input_files,
outputs = [output_file, 'stderr.txt', 'stdout.txt'],
output_dir = os.path.join(input_dir, 'output'),
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

82 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Making the script executable

Finally, in order to make the script executable, we add the following lines to the end of the file. The Warholize-
Scritp().run() call will be executed only when the file is run as a script, and will do all the magic related to argument
parsing, creating the session etc. . . :

if __name__ == '__main__':
import warholize
warholize.WarholizeScript().run()

Please note that the import warholize statement is important to address issue 95 and make the gc3pie scripts
work with your current session (gstat, ginfo. . .)

Testing

To test this script I would suggest to use the famous Lena picture, which can be found in the miscelaneous section of
the Signal and Image Processing Institute page. Download the image, rename it as lena.tiff and run the following
command:

$./warholize.py -C 1 lena.tiff --copies 9

(add -r localhost if your gc3pie.conf script support it and you want to test it locally).

After completion a file Warholized.lena.tiff/output/warhol_lena.tiff will be created.

Example scripts

A collection of small example scripts highlighting different features of GC3Pie is available in the source distribution,
in folder examples/:file:

gdemo_simple.py

Simplest script you can create. It only uses Application and Engine classes to create an application, submit
it, check its status and retrieve its output.

grun.py

a SessionBasedScript that executes its argument as command. It can also run it multiple times by wrapping
it in a ParallelTaskCollection or a SequentialTaskCollection, depending on a command line option. Useful
for testing a configured resource.

gdemo_session.py

a simple SessionBasedScript that sums two values by customizing a SequentialTaskCollection.

warholize.py

an enhanced version of the warholize script proposed in the The “Warholize” Workflow Tutorial

2.2.3 GC3Libs programming API

gc3libs

GC3Libs is a python package for controlling the life-cycle of a Grid or batch computational job.

GC3Libs provides services for submitting computational jobs to Grids and batch systems, controlling their execution,
persisting job information, and retrieving the final output.

2.2. Programmer Documentation 83

https://github.com/uzh/gc3pie/issues/95
http://sipi.usc.edu/database/?volume=misc
https://github.com/uzh/gc3pie/tree/master/examples/gdemo_simple.py
https://github.com/uzh/gc3pie/tree/master/examples/grun.py
https://github.com/uzh/gc3pie/tree/master/examples/gdemo_session.py
https://github.com/uzh/gc3pie/tree/master/examples/warholize.py

gc3pie Documentation, Release 2.6.8

Fig. 2: Warholized version of Lena

84 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

GC3Libs takes an application-oriented approach to batch computing. A generic Application class provides the
basic operations for controlling remote computations, but different Application subclasses can expose adapted
interfaces, focusing on the most relevant aspects of the application being represented.

gc3libs.ANY_OUTPUT = '*'
When used in the output attribute of an application, it stands for ‘fetch the whole contents of the remote direc-
tory’.

class gc3libs.Application(arguments, inputs, outputs, output_dir, **extra_args)
Support for running a generic application with the GC3Libs.

The following parameters are required to create an Application instance:

arguments List or sequence of program arguments. The program to execute is the first one.; any object in the
list will be converted to string via Python’s str().

inputs Files that will be copied to the remote execution node before execution starts.

There are two possible ways of specifying the inputs parameter:

• It can be a Python dictionary: keys are local file paths or URLs, values are remote file names.

• It can be a Python list: each item in the list should be a pair (source, remote_file_name): the source
can be a local file or a URL; remote_file_name is the path (relative to the execution directory) where
source will be downloaded. If remote_file_name is an absolute path, an InvalidArgument error
is raised.

A single string file_name is allowed instead of the pair and results in the local file file_name being copied
to file_name on the remote host.

outputs Files and directories that will be copied from the remote execution node back to the local computer (or
a network-accessible server) after execution has completed. Directories are copied recursively.

There are three possible ways of specifying the outputs parameter:

• It can be a Python dictionary: keys are remote file or directory paths (relative to the execution direc-
tory), values are corresponding local names.

• It can be a Python list: each item in the list should be a pair (remote_file_name, destination): the des-
tination can be a local file or a URL; remote_file_name is the path (relative to the execution directory)
that will be uploaded to destination. If remote_file_name is an absolute path, an InvalidArgument
error is raised.

A single string file_name is allowed instead of the pair and results in the remote file file_name being copied
to file_name on the local host.

• The constant gc3libs.ANY_OUTPUT which instructs GC3Libs to copy every file in the remote execu-
tion directory back to the local output path (as specified by the output_dir attribute).

Note that no errors will be raised if an output file is not present. Override the terminated() method to
raise errors for reacting on this kind of failures.

output_dir Path to the base directory where output files will be downloaded. Output file names are interpreted
relative to this base directory.

requested_cores,‘requested_memory‘,‘requested_walltime‘ Specify resource requirements for the applica-
tion:

• the number of independent execution units (CPU cores; all are required to be in the same execution
node);

• amount of memory (as a gc3libs.quantity.Memory object) for the task as a whole, i.e., inde-
pendent of number of CPUs allocated;

2.2. Programmer Documentation 85

gc3pie Documentation, Release 2.6.8

• amount of wall-clock time to allocate for the computational job (as a gc3libs.quantity.
Duration object).

The following optional parameters may be additionally specified as keyword arguments and will be given special
treatment by the Application class logic:

requested_architecture specify that this application can only be executed on a certain processor architecture;
see Run.Arch for a list of possible values. The default value None means that any architecture is valid,
i.e., there are no requirements on the processor architecture.

environment a dictionary defining environment variables and the values to give them in the task execution
setting. Keys of the dictionary are environmental variables names, and dictionary values define the corre-
sponding variable content. Both keys and values must be strings or convertible to string; keys (environment
variable names) must be ASCII-only or a UnicodeDecodeError will be raised.

For example, to run the application in an environment where the variable LC_ALL has the value C and the
variable HZ has the value 100, one would use:

Application(...,
environment={'LC_ALL':'C', 'HZ':100},

...)

output_base_url if not None, this is prefixed to all output files (except stdout and stderr, which are always
retrieved), so, for instance, having output_base_url=”gsiftp://example.org/data” will upload output files
into that remote directory.

stdin file name of a file whose contents will be fed as standard input stream to the remote-executing process.

stdout name of a file where the standard output stream of the remote executing process will be redirected to;
will be automatically added to outputs.

stderr name of a file where the standard error stream of the remote executing process will be redirected to; will
be automatically added to outputs.

join if this evaluates to True, then standard error is redirected to the file specified by stdout and stderr is ignored.
(join has no effect if stdout is not given.)

jobname a string to display this job in user-oriented listings

tags list of tag names (string) that must be present on a resource in order to be eligible for submission.

Any other keyword arguments will be set as instance attributes, but otherwise ignored by the Application con-
structor.

After successful construction, an Application object is guaranteed to have the following instance attributes:

arguments list of strings specifying command-line arguments for executable invocation. The first element must
be the executable.

inputs dictionary mapping source URL (a gc3libs.url.Url object) to a remote file name (a string); remote
file names are relative paths (root directory is the remote job folder)

outputs dictionary mapping remote file name (a string) to a destination (a gc3libs.url.Url); remote file
names are relative paths (root directory is the remote job folder)

output_dir Path to the base directory where output files will be downloaded. Output file names (those which
are not URLs) are interpreted relative to this base directory.

execution a Run instance; its state attribute is initially set to NEW (Actually inherited from the Task)

environment dictionary mapping environment variable names to the requested value (string); possibly empty

stdin None or a string specifying a (local) file name. If stdin is not None, then it matches a key name in inputs

86 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

stdout None or a string specifying a (remote) file name. If stdout is not None, then it matches a key name in
outputs

stderr None or a string specifying a (remote) file name. If stdout is not None, then it matches a key name in
outputs

join boolean value, indicating whether stdout and stderr are collected into the same file

tags list of strings specifying the tags to request in each resource for submission; possibly empty.

application_name = 'generic'
A name for applications of this class.

This string is used as a prefix for configuration items related to this application in configured resources.
For example, if the application_name is foo, then the application interface code in GC3Pie might search
for foo_cmd, foo_extra_args, etc. See qsub_sge() for an actual example.

bsub(resource, **extra_args)
Get an LSF qsub command-line invocation for submitting an instance of this application. Return a pair
(cmd_argv, app_argv), where cmd_argv is a list containing the argv-vector of the command to run to
submit an instance of this application to the LSF batch system, and app_argv is the argv-vector to use
when invoking the application.

In the construction of the command-line invocation, one should assume that all the input files (as named
in Application.inputs) have been copied to the current working directory, and that output files should be
created in this same directory.

The default implementation just prefixes any output from the cmdline method with an LSF bsub invoca-
tion of the form bsub -cwd . -L /bin/sh + resource limits.

Override this method in application-specific classes to provide appropriate invocation templates and/or add
resource-specific submission options.

cmdline(resource)
Return list of command-line arguments for invoking the application.

This is exactly the argv-vector of the application process: the application command name is included as
first item (index 0) of the list, further items are command-line arguments.

Hence, to get a UNIX shell command-line, just concatenate the elements of the list, separating them with
spaces.

compatible_resources(resources)
Return a list of compatible resources.

fetch_output_error(ex)
Invocation of Core.fetch_output() on this object failed; ex is the Exception that describes the error.

If this method returns an exception object, that is raised as a result of the Core.fetch_output(), otherwise
the return value is ignored and Core.fetch_output returns None.

Default is to return ex unchanged; override in derived classes to change this behavior.

qsub_pbs(resource, **extra_args)
Similar to qsub_sge(), but for the PBS/TORQUE resource manager.

qsub_sge(resource, **extra_args)
Get an SGE qsub command-line invocation for submitting an instance of this application.

Return a pair (cmd_argv, app_argv). Both cmd_argv and app_argv are argv-lists: the command name is
included as first item (index 0) of the list, further items are command-line arguments; cmd_argv is the
argv-list for the submission command (excluding the actual application command part); app_argv is the

2.2. Programmer Documentation 87

gc3pie Documentation, Release 2.6.8

argv-list for invoking the application. By overriding this method, one can add futher resource-specific
options at the end of the cmd_argv argv-list.

In the construction of the command-line invocation, one should assume that all the input files (as named
in Application.inputs) have been copied to the current working directory, and that output files should be
created in this same directory.

The default implementation just prefixes any output from the cmdline method with an SGE qsub invo-
cation of the form qsub -cwd -S /bin/sh + resource limits. Note that there is no generic way of
requesting a certain number of cores in SGE: it all depends on the installed parallel environment, and these
are totally under control of the local sysadmin; therefore, any request for cores is ignored and a warning is
logged.

Override this method in application-specific classes to provide appropriate invocation templates and/or add
different submission options.

rank_resources(resources)
Sort the given resources in order of preference.

By default, computational resource a is preferred over b if it has less queued jobs from the same user;
failing that, if it has more free slots; failing that, if it has less queued jobs (in total); finally, should all
preceding parameters compare equal, a is preferred over b if it has less running jobs from the same user.

Resources where the job has already attempted to run (the resource front-end name is recorded in .execu-
tion._execution_targets) are then moved to the back of the list, to avoid resubmitting to a faulty resource.

sbatch(resource, **extra_args)
Get a SLURM sbatch command-line invocation for submitting an instance of this application.

Return a pair (cmd_argv, app_argv). Both cmd_argv and app_argv are argv-lists: the command name is
included as first item (index 0) of the list, further items are command-line arguments; cmd_argv is the
argv-list for the submission command (excluding the actual application command part); app_argv is the
argv-list for invoking the application. By overriding this method, one can add futher resource-specific
options at the end of the cmd_argv argv-list.

In the construction of the command-line invocation, one should assume that all the input files (as named
in Application.inputs) have been copied to the current working directory, and that output files should be
created in this same directory.

Override this method in application-specific classes to provide appropriate invocation templates and/or add
different submission options.

submit_error(exs)
Invocation of Core.submit() on this object failed; exs is a list of Exception objects, one for each attempted
submission.

If this method returns an exception object, that is raised as a result of the Core.submit(), otherwise the
return value is ignored and Core.submit returns None.

Default is to always return the first exception in the list (on the assumption that it is the root of all exceptions
or that at least it refers to the preferred resource). Override in derived classes to change this behavior.

update_job_state_error(ex)
Handle exceptions that occurred during a Core.update_job_state call.

If this method returns an exception object, that exception is processed in Core.update_job_state() instead of
the original one. Any other return value is ignored and Core.update_job_state proceeds as if no exception
had happened.

Argument ex is the exception that was raised by the backend during job state update.

Default is to return ex unchanged; override in derived classes to change this behavior.

88 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

class gc3libs.Run(initializer=None, attach=None, **keywd)
A specialized dict-like object that keeps information about the execution state of an Application instance.

A Run object is guaranteed to have the following attributes:

log A gc3libs.utils.History instance, recording human-readable text messages on events in this job’s
history.

info A simplified interface for reading/writing messages to Run.log. Reading from the info attribute
returns the last message appended to log. Writing into info appends a message to log.

timestamp Dictionary, recording the most recent timestamp when a certain state was reached. Times-
tamps are given as UNIX epochs.

For properties state, signal and returncode, see the respective documentation.

Run objects support attribute lookup by both the [...] and the . syntax; see gc3libs.utils.Struct for examples.

class Arch
Processor architectures, for use as values in the requested_architecture field of the Application class con-
structor.

The following values are currently defined:

X86_64 64-bit Intel/AMD/VIA x86 processors in 64-bit mode.

X86_32 32-bit Intel/AMD/VIA x86 processors in 32-bit mode.

exitcode
The “exit code” part of a Run.returncode, see os.WEXITSTATUS. This is an 8-bit integer, whose meaning
is entirely application-specific. (However, the value 255 is often used to mean that an error has occurred
and the application could not end its execution normally.)

in_state(*names)
Return True if the Run state matches any of the given names.

In addition to the states from Run.State, the two additional names ok and failed are also accepted,
with the following meaning:

• ok: state is TERMINATED and returncode is 0.

• failed: state is TERMINATED and returncode is non-zero.

returncode
The returncode attribute of this job object encodes the Run termination status in a manner compatible with
the POSIX termination status as implemented by os.WIFSIGNALED and os.WIFEXITED.

However, in contrast with POSIX usage, the exitcode and the signal part can both be significant: in case
a Grid middleware error happened after the application has successfully completed its execution. In other
words, os.WEXITSTATUS(returncode) is meaningful iff os.WTERMSIG(returncode) is 0 or one of the
pseudo-signals listed in Run.Signals.

Run.exitcode and Run.signal are combined to form the return code 16-bit integer as follows (the convention
appears to be obeyed on every known system):

Bit Encodes. . .
0..7 signal number
8 1 if program dumped core.
9..16 exit code

Note: the “core dump bit” is always 0 here.

2.2. Programmer Documentation 89

gc3pie Documentation, Release 2.6.8

Setting the returncode property sets exitcode and signal; you can either assign a (signal, exitcode) pair to
returncode, or set returncode to an integer from which the correct exitcode and signal attribute values are
extracted:

>>> j = Run()
>>> j.returncode = (42, 56)
>>> j.signal
42
>>> j.exitcode
56

>>> j.returncode = 137
>>> j.signal
9
>>> j.exitcode
0

See also Run.exitcode and Run.signal.

static shellexit_to_returncode(rc)
Convert shell exit code to POSIX process return code. The “return code” is represented as a pair (signal,
exitcode) suitable for setting the returncode property.

A POSIX shell represents the return code of the last-run program within its exit code as follows:

• If the program was terminated by signal K, the shell exits with code 128+K,

• otherwise, if the program terminated with exit code X, the shell exits with code X. (Yes, the mapping
is not bijective and it is possible that a program wants to exit with, e.g., code 137 and this is mistaken
for it having been killed by signal 9. Blame the original UNIX implementors for this.)

Examples:

• Shell exit code 137 means that the last program got a SIGKILL. Note that in this case there is no
well-defined “exit code” of the program; we use -1 in the place of the exit code to mark it:

>>> Run.shellexit_to_returncode(137)
(9, -1)

• Shell exit code 75 is a valid program exit code:

>>> Run.shellexit_to_returncode(75)
(0, 75)

• . . . and so is, of course, 0:

>>> Run.shellexit_to_returncode(0)
(0, 0)

signal
The “signal number” part of a Run.returncode, see os.WTERMSIG for details.

The “signal number” is a 7-bit integer value in the range 0..127; value 0 is used to mean that no signal has
been received during the application runtime (i.e., the application terminated by calling exit()).

The value represents either a real UNIX system signal, or a “fake” one that GC3Libs uses to represent Grid
middleware errors (see Run.Signals).

state
The state a Run is in.

90 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

The value of Run.state must always be a value from the Run.State enumeration, i.e., one of the following
values.

Run.State
value

purpose can change to

NEW Job has not yet been submitted/started SUBMITTED
SUB-
MITTED

Job has been sent to execution resource RUNNING, STOPPED

STOPPED Trap state: job needs manual intervention (either user- or
sysadmin-level) to resume normal execution

TERMINATING(by gkill),
SUBMITTED (by miracle)

RUN-
NING

Job is executing on resource TERMINATING

TERMI-
NATING

Job has finished execution on (possibly remote) re-
source; output not yet retrieved

TERMINATED

TERMI-
NATED

Job execution is finished (correctly or not) and output
has been retrieved

None: final state

UN-
KNOWN

GC3Pie can no longer monitor Job at the remote site: job
may not need manual intervention.

Any other state except for
NEW

When a Run object is first created, it is assigned the state NEW. After a successful invocation of
Core.submit(), it is transitioned to state SUBMITTED. Further transitions to RUNNING or STOPPED or
TERMINATED state, happen completely independently of the creator progra; the Core.update_job_state()
call provides updates on the status of a job.

The STOPPED state is a kind of generic “run time error” state: a job can get into the STOPPED state
if its execution is stopped (e.g., a SIGSTOP is sent to the remote process) or delayed indefinitely (e.g.,
the remote batch system puts the job “on hold”). There is no way a job can get out of the STOPPED
state automatically: all transitions from the STOPPED state require manual intervention, either by the
submitting user (e.g., cancel the job), or by the remote systems administrator (e.g., by releasing the hold).

The TERMINATED state is the final state of a job: once a job reaches it, it cannot get back to any other
state. Jobs reach TERMINATED state regardless of their exit code, or even if a system failure occurred
during remote execution; actually, jobs can reach the TERMINATED status even if they didn’t run at all,
for example, in case of a fatal failure during the submission step.

class gc3libs.Task(**extra_args)
Mix-in class implementing a facade for job control.

A Task can be described as an “active” job, in the sense that all job control is done through methods on the Task
instance itself; contrast this with operating on Application objects through a Core or Engine instance.

The following pseudo-code is an example of the usage of the Task interface for controlling a job. Assume that
GamessApplication is inheriting from Task (it actually is):

t = GamessApplication(input_file)
t.submit()
... do other stuff
t.update_state()
... take decisions based on t.execution.state
t.wait() # blocks until task is terminated

Each Task object has an execution attribute: it is an instance of class Run, initialized with a new instance of Run,
and at any given time it reflects the current status of the associated remote job. In particular, execution.state can
be checked for the current task status.

After successful initialization, a Task instance will have the following attributes:

2.2. Programmer Documentation 91

gc3pie Documentation, Release 2.6.8

changed evaluates to True if the Task has been changed since last time it has been saved to persistent storage
(see gclibs.persistence)

execution a Run instance; its state attribute is initially set to NEW.

attach(controller)
Use the given Grid interface for operations on the job associated with this task.

detach()
Remove any reference to the current grid interface. After this, calling any method other than attach()
results in an exception TaskDetachedFromControllerError being thrown.

fetch_output(output_dir=None, overwrite=False, changed_only=True, **extra_args)
Retrieve the outputs of the computational job associated with this task into directory output_dir, or, if that
is None, into the directory whose path is stored in instance attribute .output_dir.

If the execution state is TERMINATING, transition the state to TERMINATED (which runs the appropriate
hook).

See gc3libs.Core.fetch_output() for a full explanation.

Returns Path to the directory where the job output has been collected.

free(**extra_args)
Release any remote resources associated with this task.

See gc3libs.Core.free() for a full explanation.

kill(**extra_args)
Terminate the computational job associated with this task.

See gc3libs.Core.kill() for a full explanation.

new()
Called when the job state is (re)set to NEW.

Note this will not be called when the application object is created, rather if the state is reset to NEW after
it has already been submitted.

The default implementation does nothing, override in derived classes to implement additional behavior.

peek(what=’stdout’, offset=0, size=None, **extra_args)
Download size bytes (at offset offset from the start) from the associated job standard output or error stream,
and write them into a local file. Return a file-like object from which the downloaded contents can be read.

See gc3libs.Core.peek() for a full explanation.

progress()
Advance the associated job through all states of a regular lifecycle. In detail:

1. If execution.state is NEW, the associated job is started.

2. The state is updated until it reaches TERMINATED

3. Output is collected and the final returncode is returned.

An exception TaskError is raised if the job hits state STOPPED or UNKNOWN during an update in phase
2.

When the job reaches TERMINATING state, the output is retrieved; if this operation is successfull, state is
advanced to TERMINATED.

Once the job reaches TERMINATED state, the return code (stored also in .returncode) is returned; if the
job is not yet in TERMINATED state, calling progress returns None.

92 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Raises exception UnexpectedStateError if the associated job goes into state STOPPED
or UNKNOWN

Returns final returncode, or None if the execution state is not TERMINATED.

redo(*args, **kwargs)
Reset the state of this Task instance to NEW.

This is only allowed for tasks which are already in a terminal state, or one of STOPPED, UNKNOWN, or
NEW; otherwise an AssertionError is raised.

The task should then be resubmitted to actually resume execution.

See also SequentialTaskCollection.redo().

Raises AssertionError – if this Task’s state is not terminal.

running()
Called when the job state transitions to RUNNING, i.e., the job has been successfully started on a (possibly)
remote resource.

The default implementation does nothing, override in derived classes to implement additional behavior.

stopped()
Called when the job state transitions to STOPPED, i.e., the job has been remotely suspended for an un-
known reason and cannot automatically resume execution.

The default implementation does nothing, override in derived classes to implement additional behavior.

submit(resubmit=False, targets=None, **extra_args)
Start the computational job associated with this Task instance.

submitted()
Called when the job state transitions to SUBMITTED, i.e., the job has been successfully sent to a (possibly)
remote execution resource and is now waiting to be scheduled.

The default implementation does nothing, override in derived classes to implement additional behavior.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with whatever
exit status, see returncode) and the final output has been retrieved.

The location where the final output has been stored is available in attribute self.output_dir.

The default implementation does nothing, override in derived classes to implement additional behavior.

terminating()
Called when the job state transitions to TERMINATING, i.e., the remote job has finished execution (with
whatever exit status, see returncode) but output has not yet been retrieved.

The default implementation does nothing, override in derived classes to implement additional behavior.

unknown()
Called when the job state transitions to UNKNOWN, i.e., the job has not been updated for a certain period
of time thus it is placed in UNKNOWN state.

Two possible ways of changing from this state: 1) next update cycle, job status is updated from the remote
server 2) derive this method for Application specific logic to deal with this case

The default implementation does nothing, override in derived classes to implement additional behavior.

update_state(**extra_args)
In-place update of the execution state of the computational job associated with this Task. After successful
completion, .execution.state will contain the new state.

2.2. Programmer Documentation 93

gc3pie Documentation, Release 2.6.8

After the job has reached the TERMINATING state, the following attributes are also set:

execution.duration Time lapse from start to end of the job at the remote execution site, as a gc3libs.
quantity.Duration value. (This is also often referred to as the ‘wall-clock time’ or walltime of
the job.)

execution.max_used_memory Maximum amount of RAM used during job execution, represented as a
gc3libs.quantity.Memory value.

execution.used_cpu_time Total time (as a gc3libs.quantity.Duration value) that the processors
has been actively executing the job’s code.

The execution backend may set additional attributes; the exact name and format of these additional at-
tributes is backend-specific. However, you can easily identify the backend-specific attributes because their
name is prefixed with the (lowercased) backend name; for instance, the PbsLrms backend sets attributes
pbs_queue, pbs_end_time, etc.

wait(interval=60)
Block until the associated job has reached TERMINATED state, then return the job’s return code. Note that
this does not automatically fetch the output.

Parameters interval (integer) – Poll job state every this number of seconds

gc3libs.configure_logger(level=40, name=None, format=’__main__.py: [%(asctime)s]
%(levelname)-8s: %(message)s’, datefmt=’%Y-%m-%d %H:%M:%S’,
colorize=’auto’)

Configure the gc3.gc3libs logger.

Arguments level, format and datefmt set the corresponding arguments in the logging.basicConfig() call.

Argument colorize controls the use of the coloredlogs module to color-code log output lines. The default value
auto enables log colorization iff the sys.stderr stream is connected to a terminal; a True value will enable it
regardless of the log output stream terminal status, and any False value will disable log colorization altogether.
Note that log colorization can anyway be disabled if coloredlogs thinks that the terminal is not capable of colored
output; see coloredlogs.terminal_supports_colors. If the coloredlogs module cannot be imported, a warning is
logged and log colorization is disabled.

A user configuration file named NAME.log.conf or gc3pie.log.conf is searched for in the directory
pointed to by environment variable GC3PIE_CONF, and then in ~/.gc3; if found, it is read and used for more
advanced configuration; if it does not exist, then a sample one is created in location ~/.gc3/gc3pie.log.
conf

gc3libs.create_core(*conf_files, **extra_args)
Make and return a gc3libs.core.Core instance.

It accepts an optional list of configuration filenames and a dictionary to create a configuration object from.
Filenames containing a ~ or an environment variable reference, will be expanded automatically. If called without
arguments, the paths specified in gc3libs.defaults.CONFIG_FILE_LOCATIONS will be used.

Any keyword argument matching the name of a parameter used by Core.__init__ is passed to it. Any leftover
keyword argument is passed unchanged to the gc3libs.config.Configuration constructor. In partic-
ular, a cfg_dict keyword argument can be used to initialize a GC3Pie Core from a dictionary of configuration
values, without reading in any files.

gc3libs.create_engine(*conf_files, **extra_args)
Make and return a gc3libs.core.Engine instance.

It accepts an optional list of configuration filenames and a dictionary to create a configuration object from.
Filenames containing a ~ or an environment variable reference, will be expanded automatically. If called without
arguments, the paths specified in gc3libs.Default.CONFIG_FILE_LOCATIONS will be used.

94 Chapter 2. Table of Contents

https://coloredlogs.readthedocs.org/en/latest/
https://coloredlogs.readthedocs.org/en/latest/
http://humanfriendly.readthedocs.org/en/latest/index.html#humanfriendly.terminal.terminal_supports_colors
https://coloredlogs.readthedocs.org/en/latest/

gc3pie Documentation, Release 2.6.8

Any keyword argument that matches the name of a parameter of the constructor for Engine is passed
to that constructor. Likewise, any keyword argument that matches the name of a parameter used by
Core.__init__ is passed to it. Any leftover keyword argument is passed unchanged to the gc3libs.config.
Configuration constructor. In particular, a cfg_dict keyword argument can be used to initialize a GC3Pie
Engine from a dictionary of configuration values, without reading in any files.

gc3libs.error_ignored(*ctx)
Return True if no object in list ctx matches the contents of the GC3PIE_NO_CATCH_ERRORS environment
variable.

Note that the list of un-ignored errors is determined when the gc3libs module is initially loaded and is thus
insensitive to changes in the environment that happen afterwards.

The calling interface is so designed, that a list of keywords describing -or related- to the error are passed; if
any of them has been mentioned in the environment variable GC3PIE_NO_CATCH_ERRORS then this function
returns False – i.e., the error is never ignored by GC3Pie and always propagated to the top-level handler.

gc3libs.application

Specialized support for popular scientific applications.

Each application-specific class is packaged in a separate submodule, which see for details.

gc3libs.application.apppot

Support for AppPot-hosted applications.

For more details about AppPot, visit: <http://apppot.googlecode.com>

class gc3libs.application.apppot.AppPotApplication(arguments, inputs, outputs, out-
put_dir, apppot_img=None,
apppot_changes=None,
apppot_tag=’ENV/APPPOT-
0.21’, apppot_extra=[], **ex-
tra_args)

Base class for AppPot-hosted applications. Provides the same interface as the base Application and runs
the specified command in an AppPot instance.

In addition to the standard Application keyword arguments, the following ones can be given to steer the
AppPot execution:

• apppot_img: Path or URL to the AppPot system image to use. If None (default), then the default AppPot
system image on the remote system is used.

• apppot_changes: Path or URL to an AppPot changes file to be merged at system startup.

• apppot_tag: ARC RTE to use for submission of this AppPot job.

• apppot_extra: List of additional UML boot command-line arguments. (Passed to the AppPot instance via
apppot-start’s --extra option.)

gc3libs.application.codeml

Simple interface to the CODEML application.

class gc3libs.application.codeml.CodemlApplication(*ctls, **extra_args)
Run a CODEML job with the specified ‘.ctl’ files.

2.2. Programmer Documentation 95

http://apppot.googlecode.com

gc3pie Documentation, Release 2.6.8

The given ‘.ctl’ input files are parsed and the ‘.phy’ and ‘.nwk’ files mentioned therein are added to the list of
files to be copied to the execution site.

static aux_files(ctl_path)
Return full path to the seqfile and treefile referenced in the ‘.ctl’ file given as arguments.

terminated()
Set the exit code of a CodemlApplication job by inspecting its .mlc output files.

An output file is valid iff its last line of each output file reads Time used: MM:SS or Time used:
HH:MM:SS

The exit status of the whole job is a bit field composed as follows:

bit no. meaning
0 H1.mlc valid (0=valid, 1=invalid)
1 H1.mlc present (0=present, 1=no file)
2 H0.mlc valid (0=valid, 1=invalid)
3 H0.mlc present (0=present, 1=not present)
7 error running codeml (1=error, 0=ok)

The special value 127 is returned in case codeml did not run at all (Grid or remote cluster error).

So, exit code 0 means that all files processed successfully, code 1 means that H0.mlc has not been
downloaded (for whatever reason).

TODO:

• Check if the stderr is empty.

gc3libs.application.demo

Specialized support for computational jobs running simple demo.

class gc3libs.application.demo.Square(x)
Square class, takes a filename containing a list of integer to be squared. writes an output containing the square
of each of them

gc3libs.application.gamess

Specialized support for computational jobs running GAMESS-US.

class gc3libs.application.gamess.GamessAppPotApplication(inp_file_path,
*other_input_files,
**extra_args)

Specialized AppPotApplication object to submit computational jobs running GAMESS-US.

This class makes no check or guarantee that a GAMESS-US executable will be available in the executing AppPot
instance: the apppot_img and apppot_tag keyword arguments can be used to select the AppPot system image to
run this application; see the AppPotApplication for information.

The __init__ construction interface is compatible with the one used in GamessApplication. The only
required parameter for construction is the input file name; any other argument names an additional input file,
that is added to the Application.inputs list, but not otherwise treated specially.

Any other keyword parameter that is valid in the Application class can be used here as well, with the exception
of input and output. Note that a GAMESS-US job is always submitted with join = True, therefore any stderr
setting is ignored.

96 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

class gc3libs.application.gamess.GamessApplication(inp_file_path, *other_input_files,
**extra_args)

Specialized Application object to submit computational jobs running GAMESS-US.

The only required parameter for construction is the input file name; subsequent positional arguments are addi-
tional input files, that are added to the Application.inputs list, but not otherwise treated specially.

The verno parameter is used to request a specific version of GAMESS-US; if the default value None is used,
the default version of GAMESS-US at the executing site is run.

Any other keyword parameter that is valid in the Application class can be used here as well, with the exception
of input and output. Note that a GAMESS-US job is always submitted with join = True, therefore any stderr
setting is ignored.

terminated()
Append to log the termination status line as extracted from the GAMESS ‘.out’ file.

The job exit code .execution.exitcode is (re)set according to the following table:

Exit code Meaning
0 the output file contains the string EXECUTION OF GAMESS TERMINATED

normally
1 the output file contains the string EXECUTION OF GAMESS TERMINATED

-ABNORMALLY-
2 the output file contains the string ddikick exited unexpectedly
70
(os.EX_SOFTWARE)

the output file cannot be read or does not match any of the above patterns

gc3libs.application.rosetta

Specialized support for computational jobs running programs in the Rosetta suite.

class gc3libs.application.rosetta.RosettaApplication(application, applica-
tion_release, inputs, out-
puts=[], flags_file=None,
database=None, argu-
ments=[], **extra_args)

Specialized Application object to submit one run of a single application in the Rosetta suite.

Required parameters for construction:

• application: name of the Rosetta application to call (e.g., “docking_protocol” or “relax”)

• inputs: a dict instance, keys are Rosetta -in:file:* options, values are the (local) path names of the
corresponding files. (Example: inputs={"-in:file:s":"1brs.pdb"})

• outputs: list of output file names to fetch after Rosetta has finished running.

Optional parameters:

• flags_file: path to a local file containing additional flags for controlling Rosetta invocation; if None, a local
configuration file will be used.

• database: (local) path to the Rosetta DB; if this is not specified, then it is assumed that the correct location
will be available at the remote execution site as environment variable ROSETTA_DB_LOCATION

• arguments: If present, they will be appended to the Rosetta application command line.

terminated()
Extract output files from the tar archive created by the ‘rosetta.sh’ script.

2.2. Programmer Documentation 97

gc3pie Documentation, Release 2.6.8

class gc3libs.application.rosetta.RosettaDockingApplication(pdb_file_path, na-
tive_file_path=None,
num-
ber_of_decoys_to_create=1,
flags_file=None,
applica-
tion_release=’3.1’,
**extra_args)

Specialized Application class for executing a single run of the Rosetta “docking_protocol” application.

Currently used in the gdocking app.

gc3libs.application.turbomole

Specialized support for TURBOMOLE.

class gc3libs.application.turbomole.TurbomoleApplication(program, control, *oth-
ers, **extra_args)

Run TURBOMOLE’s program on the given control file. Any additional arguments are considered additional
filenames to input files (e.g., the coord file) and copied to the execution directory.

Parameters

• program (str) – Name of the TURBOMOLE’s program to run (e.g., ridft)

• control (str) – Path to a file in TURBOMOLE’s control format.

• others – Path(s) to additional input files.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with whatever
exit status, see returncode) and the final output has been retrieved.

The location where the final output has been stored is available in attribute self.output_dir.

The default implementation does nothing, override in derived classes to implement additional behavior.

class gc3libs.application.turbomole.TurbomoleDefineApplication(program, de-
fine_in, coord,
*others, **ex-
tra_args)

Run TURBOMOLE’s ‘define’ with the given define_in file as input, then run program on the control file pro-
duced.

Any additional arguments are considered additional filenames to input files and copied to the execution directory.

Parameters

• program (str) – Name of the TURBOMOLE’s program to run (e.g., ridft)

• define_in (str) – Path to a file containing keystrokes to pass as input to the ‘define’
program.

• coord (str) – Path to a file containing the molecule coordinates in TURBOMOLE’s for-
mat.

• others – Path(s) to additional input files.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with whatever
exit status, see returncode) and the final output has been retrieved.

The location where the final output has been stored is available in attribute self.output_dir.

98 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

The default implementation does nothing, override in derived classes to implement additional behavior.

gc3libs.authentication

Authentication support for the GC3Libs.

class gc3libs.authentication.Auth(config, auto_enable)
A mish-mash of authorization functions.

This class actually serves the purposes of:

• a registry of authorization ‘types’, mapping internally-assigned names to Python classes;

• storage for the configuration information (which can be arbitrary, but should probably be read off a con-
figuration file);

• a factory, returning a ‘SomeAuth’ object through which clients can deal with actual authorization issues
(like checking if the authorization credentials are valid and getting/renewing them).

• a cache, that tries to avoid expensive re-initializations of Auth objects by allowing only one live instance
per type, and returning it when requested.

FIXME

There are several problems with this approach:

• the configuration is assumed static and cannot be changed after the Auth instance is constructed.

• there is no communication between the client class and the Auth classes.

• there is no control over the lifetime of the cache; at a minimum, it should be settable per-auth-type.

• I’m unsure whether the mapping of ‘type names’ (as in the type=. . . keyword in the config file) to Python
classes belongs in a generic factory method or in the configuration file reader. (Probably the former, so the
code here would actually be right.)

• The whole auto_enable stuff really belongs to the user-interface part, which is also hard-coded in the auth
classes, and should not be.

add_params(**params)
Add the specified keyword arguments as initialization parameters to all the configured auth classes.

Parameters that have already been specified are silently overwritten.

get(auth_name, **kwargs)
Return an instance of the Auth class corresponding to the given auth_name, or raise an exception if instan-
ciating the same class has given an unrecoverable exception in past calls.

Additional keyword arguments are passed unchanged to the class constructor and can override values
specified at configuration time.

Instances are remembered for the lifetime of the program; if an instance of the given class is already present
in the cache, that one is returned; otherwise, an instance is contructed with the given parameters.

Caution: The params keyword arguments are only used if a new instance is constructed and are
silently ignored if the cached instance is returned.

class gc3libs.authentication.NoneAuth(**auth)
Auth proxy to use when no auth is needed.

2.2. Programmer Documentation 99

gc3pie Documentation, Release 2.6.8

gc3libs.authentication.ec2

gc3libs.authentication.openstack

gc3libs.authentication.ssh

Authentication support for accessing resources through the SSH protocol.

gc3libs.backends

Interface to different resource management systems for the GC3Libs.

class gc3libs.backends.LRMS(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth=None, **extra_args)

Base class for interfacing with a computing resource.

The following construction parameters are also set as instance attributes. All of them are mandatory, except
auth.

At-
tribute
name

Ex-
pected
Type

Meaning

name string A unique identifier for this resource, used for generating error message.
archi-
tecture

set of
Run.Arch
values

Should contain one entry per each architecture supported. Valid architecture values are
constants in the gc3libs.Run.Arch class.

auth string A gc3libs.authentication.Auth instance that will be used to access the computational
resource associated with this backend. The default value None is used to mean that
no authentication credentials are needed (e.g., access to the resource has been pre-
authenticated) or is managed outside of GC3Pie).

max_coresint Maximum number of CPU cores that GC3Pie can allocate on this resource.
max_cores_per_jobint Maximum number of CPU cores that GC3Pie can allocate on this resource for a single

job.
max_memory_per_coreMem-

ory
Maximum memory that GC3Pie can allocate to jobs on this resource. The value is per
core, so the actual amount allocated to a single job is the value of this entry multiplied
by the number of cores requested by the job.

max_walltimeDura-
tion

Maximum wall-clock time that can be allotted to a single job running on this resource.

The above should be considered immutable attributes: they are specified at construction time and changed never
after.

The following attributes are instead dynamically provided (i.e., defined by the get_resource_status() method or
similar), thus can change over the lifetime of the object:

Attribute name Type
free_slots int
user_run int
user_queued int
queued int

static authenticated(fn)
Decorator: mark a function as requiring authentication.

100 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Each invocation of the decorated function causes a call to the get method of the authentication object
(configured with the auth parameter to the class constructor).

cancel_job(app)
Cancel a running job. If app is associated to a queued or running remote job, tell the execution middleware
to cancel it.

close()
Implement gracefully close on LRMS dependent resources e.g. transport

free(app)
Free up any remote resources used for the execution of app. In particular, this should delete any remote
directories and files.

Call this method when app.execution.state is anything other than TERMINATED results in undefined be-
havior and will likely be the cause of errors later on. Be cautious.

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Resource
object.

get_results(job, download_dir, overwrite=False, changed_only=True)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or subdi-
rectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

• if changed_only is True (default), then only files for which the source has a different size or has been
modified more recently than the destination are copied;

• if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those files
such that the source is newer or different in size than the destination.

peek(app, remote_filename, local_file, offset=0, size=None)
Download size bytes (at offset offset from the start) from remote file remote_filename and write them into
local_file. If size is None (default), then snarf contents of remote file from offset unto the end.

First argument remote_filename is the path to a file relative to the remote job “sandbox”.

Argument local_file is either a local path name (string), or a file-like object supporting a .write() method.
If local_file is a path name, it is created if not existent, otherwise overwritten. In any case, upon exit from
this procedure, the stream will be positioned just after the written bytes.

Fourth optional argument offset is the offset from the start of the file. If offset is negative, it is interpreted
as an offset from the end of the remote file.

Any exception raised by operations will be re-raised to the caller.

2.2. Programmer Documentation 101

gc3pie Documentation, Release 2.6.8

submit_job(application, job)
Submit an Application instance to the configured computational resource; return a gc3libs.Job instance for
controlling the submitted job.

This method only returns if the job is successfully submitted; upon any failure, an exception is raised.

Note:

1. job.state is not altered; it is the caller’s responsibility to update it.

2. the job object may be updated with any information that is necessary for this LRMS to perform further
operations on it.

update_job_state(app)
Query the state of the remote job associated with app and update app.execution.state accordingly. Return
the corresponding Run.State; see Run.State for more details.

validate_data(data_file_list=None)
Return True if the list of files is expressed in one of the file transfer protocols the LRMS supports.

Return False otherwise.

gc3libs.backends.batch

This module provides a generic BatchSystem class from which all batch-like backends should inherit.

class gc3libs.backends.batch.BatchSystem(name, architecture, max_cores,
max_cores_per_job, max_memory_per_core,
max_walltime, auth, frontend, transport,
accounting_delay=15, ssh_config=None,
keyfile=None, ignore_ssh_host_keys=False,
ssh_timeout=None, large_file_threshold=None,
large_file_chunk_size=None,
spooldir=’$HOME/.gc3pie_jobs’, **extra_args)

Base class for backends dealing with a batch-queue system (e.g., PBS/TORQUE, Grid Engine, etc.)

This is an abstract class, that you should subclass in order to interface with a given batch queuing system.
(Remember to call this class’ constructor in the derived class __init__ method.)

cancel_job(app)
Cancel a running job. If app is associated to a queued or running remote job, tell the execution middleware
to cancel it.

close()
Return True if the list of files is expressed in one of the file transfer protocols the LRMS supports.

Return False otherwise.

free(app)
Free up any remote resources used for the execution of app. In particular, this should delete any remote
directories and files.

Call this method when app.execution.state is anything other than TERMINATED results in undefined be-
havior and will likely be the cause of errors later on. Be cautious.

get_epilogue_script(app)
This method will get the epilogue script(s) for the app application and will return a string which contains
the contents of the script(s) merged together.

get_jobid_from_submit_output(output, regexp)
Parse the output of the submission command. Regexp is provided by the caller.

102 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

get_prologue_script(app)
This method will get the prologue script(s) for the app application and will return a string which contains
the contents of the script(s) merged together.

get_results(app, download_dir, overwrite=False, changed_only=True)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or subdi-
rectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

• if changed_only is True (default), then only files for which the source has a different size or has been
modified more recently than the destination are copied;

• if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those files
such that the source is newer or different in size than the destination.

peek(app, remote_filename, local_file, offset=0, size=None)
Download size bytes (at offset offset from the start) from remote file remote_filename and write them into
local_file. If size is None (default), then snarf contents of remote file from offset unto the end.

First argument remote_filename is the path to a file relative to the remote job “sandbox”.

Argument local_file is either a local path name (string), or a file-like object supporting a .write() method.
If local_file is a path name, it is created if not existent, otherwise overwritten. In any case, upon exit from
this procedure, the stream will be positioned just after the written bytes.

Fourth optional argument offset is the offset from the start of the file. If offset is negative, it is interpreted
as an offset from the end of the remote file.

Any exception raised by operations will be re-raised to the caller.

submit_job(app)
This method will create a remote directory to store job’s sandbox, and will copy the sandbox in there.

update_job_state(app)
Query the state of the remote job associated with app and update app.execution.state accordingly. Return
the corresponding Run.State; see Run.State for more details.

validate_data(data_file_list)
Return True if the list of files is expressed in one of the file transfer protocols the LRMS supports.

Return False otherwise.

gc3libs.backends.batch.generic_filename_mapping(jobname, jobid, file_name)
Map STDOUT/STDERR filenames (as recorded in Application.outputs) to commonly used default STD-
OUT/STDERR file names (e.g., <jobname>.o<jobid>).

2.2. Programmer Documentation 103

gc3pie Documentation, Release 2.6.8

gc3libs.backends.ec2

gc3libs.backends.lsf

Job control on LSF clusters (possibly connecting to the front-end via SSH).

class gc3libs.backends.lsf.LsfLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, frontend,
transport, lsf_continuation_line_prefix_length=None,
**extra_args)

Job control on LSF clusters (possibly by connecting via SSH to a submit node).

get_resource_status()
Get dynamic information out of the LSF subsystem.

return self

dynamic information required (at least those): total_queued free_slots user_running user_queued

gc3libs.backends.noop

Fake running applications, only useful for testing.

class gc3libs.backends.noop.NoOpLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth=None,
**extra_args)

Simulate execution of an Application:class instance.

Upon every invocation of update_job_state() the application status is advanced to the next state (accord-
ing to the normal progression SUBMITTED -> RUNNING -> TERMINATING).

This progression can be altered by assigning a different transition graph to attribute transition_graph on an
instance. The transition graph has a two-level structure:

• keys are task execution states (e.g., Run.State.SUBMITTED)

• values are dictionaries, mapping a probability (i.e., a floating point number between 0.0 and 1.0) to a
new state. All probabilities should sum to a number less then, or equal to, 1.0 – but this condition is not
checked or enforced. Likewise, it is not checked nor enforced that the new state is a valid target state given
the source.

Every invocation of update_job_state() results in the task execution state possibly changing to one of
the target states, according to the given transition probabilities.

For example, the following transition graph specifies that a job in state SUBMITTED can change to RUNNING
with 80% probability (and with 20% stay in SUBMITTED state); a job in state RUNNING has a 50% chance of
transitioning to TERMINATING, 10% chance of being STOPPED and 40% chance of staying in state RUNNING;
and a job in STOPPED state stays in STOPPED state forever:

| transition_graph = {
| Run.State.SUBMITTED = {
| 0.80: Run.State.RUNNING,
| },
| Run.State.RUNNING = {
| 0.50: Run.State.TERMINATING,
| 0.10: Run.State.STOPPED,
| 0.40: Run.State.RUNNING, # implcit, could be omitted
| },
| Run.State.STOPPED = {

(continues on next page)

104 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

| 1.00: Run.State.STOPPED,
| },
| }

All parameters taken by the base class LRMS are understood by this class constructor, but they are actually
ignored.

cancel_job(app)
Cancel a running job. If app is associated to a queued or running remote job, tell the execution middleware
to cancel it.

close()
This is a no-op for this backend.

free(app)
This is a no-op for this backend.

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Resource
object.

get_results(app, download_dir, overwrite=False, changed_only=True)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or subdi-
rectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

• if changed_only is True (default), then only files for which the source has a different size or has been
modified more recently than the destination are copied;

• if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those files
such that the source is newer or different in size than the destination.

peek(app, remote_filename, local_file, offset=0, size=None)
Not supported on this backend.

submit_job(app)
Transition app’s status to Run.State.SUBMITTED if possible.

Note that this method still checks that app’s requirements are compatible with what this resource was
instanciated with, and that conversely the resource still has enough free cores/memory/etc to host a new
application. So, submission to a No-Op resource may still fail!

update_job_state(app)
Advance app’s status to the next one in the normal execution graph.

2.2. Programmer Documentation 105

gc3pie Documentation, Release 2.6.8

validate_data(data_file_list=[])
Return False if any of the URLs in data_file_list cannot be handled by this backend.

The noop backend can not do any kind of I/O, so this method will only return True if the supplied list of
files is empty.

gc3libs.backends.noop.random()→ x in the interval [0, 1).

gc3libs.backends.openstack

gc3libs.backends.pbs

Job control on PBS/Torque clusters (possibly connecting to the front-end via SSH).

class gc3libs.backends.pbs.PbsLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, frontend,
transport, queue=None, **extra_args)

Job control on PBS/Torque clusters (possibly by connecting via SSH to a submit node).

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Resource
object.

gc3libs.backends.pbs.count_jobs(qstat_output, whoami)
Parse PBS/Torque’s qstat output (as contained in string qstat_output) and return a quadruple (R, Q, r, q)
where:

• R is the total number of running jobs in the PBS/Torque cell (from any user);

• Q is the total number of queued jobs in the PBS/Torque cell (from any user);

• r is the number of running jobs submitted by user whoami;

• q is the number of queued jobs submitted by user whoami

gc3libs.backends.sge

Job control on SGE clusters (possibly connecting to the front-end via SSH).

class gc3libs.backends.sge.SgeLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, frontend,
transport, default_pe=None, **extra_args)

Job control on SGE clusters (possibly by connecting via SSH to a submit node).

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Resource
object.

gc3libs.backends.sge.compute_nr_of_slots(qstat_output)
Compute the number of total, free, and used/reserved slots from the output of SGE’s qstat -F.

Return a dictionary instance, mapping each host name into a dictionary instance, mapping the strings total,
available, and unavailable to (respectively) the the total number of slots on the host, the number of free
slots on the host, and the number of used+reserved slots on the host.

Cluster-wide totals are associated with key global.

Note: The ‘available slots’ computation carried out by this function is unreliable: there is indeed no notion of a
‘global’ or even ‘per-host’ number of ‘free’ slots in SGE. Slot numbers can be computed per-queue, but a host
can belong in different queues at the same time; therefore the number of ‘free’ slots available to a job actually

106 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

depends on the queue it is submitted to. Since SGE does not force users to submit explicitly to a queue, rather
encourages use of a sort of ‘implicit’ routing queue, there is no way to compute the number of free slots, as this
entirely depends on how local policies will map a job to the available queues.

gc3libs.backends.sge.count_jobs(qstat_output, whoami)
Parse SGE’s qstat output (as contained in string qstat_output) and return a quadruple (R, Q, r, q) where:

• R is the total number of running jobs in the SGE cell (from any user);

• Q is the total number of queued jobs in the SGE cell (from any user);

• r is the number of running jobs submitted by user whoami;

• q is the number of queued jobs submitted by user whoami

gc3libs.backends.sge.parse_qhost_f(qhost_output)
Parse SGE’s qhost -F output (as contained in string qhost_output) and return a dict instance, mapping each
host name to its attributes.

gc3libs.backends.sge.parse_qstat_f(qstat_output)
Parse SGE’s qstat -F output (as contained in string qstat_output) and return a dict instance, mapping each
queue name to its attributes.

gc3libs.backends.shellcmd

Run applications as processes starting them from the shell.

class gc3libs.backends.shellcmd.ShellcmdLrms(name, architecture,
max_cores, max_cores_per_job,
max_memory_per_core,
max_walltime, auth=None, fron-
tend=’localhost’, transport=’local’,
time_cmd=None, override=’False’,
spooldir=’$HOME/.gc3pie_jobs’, re-
sourcedir=None, ssh_config=None, key-
file=None, ignore_ssh_host_keys=False,
ssh_timeout=None,
large_file_threshold=None,
large_file_chunk_size=None, **ex-
tra_args)

Execute an Application instance through the shell.

Construction of an instance of ShellcmdLrms takes the following optional parameters (in addition to any param-
eters taken by the base class LRMS):

Parameters

• time_cmd (str) – Path to the GNU time command. Default is /usr/bin/time
which is correct on all known Linux distributions.

This backend uses many of the extended features of GNU time, so the shell-builtins or the
BSD time will not work.

• spooldir (str) – Path to a filesystem location where to create temporary working direc-
tories for processes executed through this backend. The default value None means to use
$TMPDIR or /var/tmp (see tempfile.mkftemp for details).

• resourcedir (str) – Path to a filesystem location where to create a temporary directory
that will contain information on the jobs running on the machine. The default value None
means to use $HOME/.gc3/shellcmd.d.

2.2. Programmer Documentation 107

gc3pie Documentation, Release 2.6.8

• transport (str) – Transport to use to connect to the resource. Valid values are 'ssh'
or 'local'.

• frontend (str) – If transport is 'ssh', then frontend is the hostname of the remote
machine where the jobs will be executed.

• ignore_ssh_host_key (bool) – When connecting to a remote resource using the
'ssh' transport the server’s SSH public key is usually checked against a database of known
hosts, and if the key is found but it does not match with the one saved in the database,
the connection will fail. Setting ignore_ssh_host_key to True will disable this check, thus
introducing a potential security issue but allowing connection even though the database
contains old/invalid keys. (The main use case is when connecting to VMs on a IaaS cloud,
since the IP is usually reused and therefore the ssh key is recreated.)

• override (bool) – ShellcmdLrms by default will try to gather information on the ma-
chine the resource is running on, including the number of cores and the available memory.
These values may be different from the values stored in the configuration file. If override
is True, then the values automatically discovered will be used instead of the ones in the
configuration file. If override is False, instead, the values in the configuration file will be
used.

• ssh_timeout (int) – If transport is 'ssh', this value will be used as timeout (in sec-
onds) for connecting to the SSH TCP socket.

• large_file_threshold (gc3libs.quantity.Memory) – Copy files below this
size in one single SFTP GET operation; see SshTransport.get() for more informa-
tion. Only used if transport is 'ssh'.

• large_file_chunk_size (gc3libs.quantity.Memory) – Copy files that are
over the above-mentioned threshold by sequentially transferring chunks of this size. see
SshTransport.get() for more information. Only used if transport is 'ssh'.

MOVER_SCRIPT = 'mover.py'
Name of the data uploader/downloader script (within PRIVATE_DIR).

PRIVATE_DIR = '.gc3pie_shellcmd'
Subdirectory of a tasks’s execution directory reserved for storing ShellcmdLrms files.

RESOURCE_DIR = '$HOME/.gc3/shellcmd.d'
Path to the directory where bookkeeping files are stored. (This is on the target machine where
ShellcmdLrms executes commands.)

It may contain environmental variable references, which are expanded through the (remote) shell.

TIMEFMT = 'WallTime=%es\nKernelTime=%Ss\nUserTime=%Us\nCPUUsage=%P\nMaxResidentMemory=%MkB\nAverageResidentMemory=%tkB\nAverageTotalMemory=%KkB\nAverageUnsharedMemory=%DkB\nAverageUnsharedStack=%pkB\nAverageSharedMemory=%XkB\nPageSize=%ZB\nMajorPageFaults=%F\nMinorPageFaults=%R\nSwaps=%W\nForcedSwitches=%c\nWaitSwitches=%w\nInputs=%I\nOutputs=%O\nSocketReceived=%r\nSocketSent=%s\nSignals=%k\nReturnCode=%x'
Format string for running commands with /usr/bin/time. It is used by GC3Pie to capture resource
usage data for commands executed through the shell.

The value used here lists all the resource usage values that GNU time can capture, with the same names
used by the ARC Resource Manager (for historical reasons).

TIMEFMT_CONV = {'AverageResidentMemory': ('shellcmd_average_resident_memory', <class 'gc3libs.quantity.Memory'>), 'AverageSharedMemory': ('shellcmd_average_shared_memory', <class 'gc3libs.quantity.Memory'>), 'AverageTotalMemory': ('shellcmd_average_total_memory', <class 'gc3libs.quantity.Memory'>), 'AverageUnsharedMemory': ('shellcmd_average_unshared_memory', <class 'gc3libs.quantity.Memory'>), 'AverageUnsharedStack': ('shellcmd_average_unshared_stack', <class 'gc3libs.quantity.Memory'>), 'CPUUsage': ('shellcmd_cpu_usage', <function _parse_percentage>), 'ForcedSwitches': ('shellcmd_involuntary_context_switches', <class 'int'>), 'Inputs': ('shellcmd_filesystem_inputs', <class 'int'>), 'KernelTime': ('shellcmd_kernel_time', <class 'gc3libs.quantity.Duration'>), 'MajorPageFaults': ('shellcmd_major_page_faults', <class 'int'>), 'MaxResidentMemory': ('max_used_memory', <class 'gc3libs.quantity.Memory'>), 'MinorPageFaults': ('shellcmd_minor_page_faults', <class 'int'>), 'Outputs': ('shellcmd_filesystem_outputs', <class 'int'>), 'PageSize': ('shellcmd_page_size', <class 'gc3libs.quantity.Memory'>), 'ReturnCode': ('returncode', <function _parse_returncode_string>), 'Signals': ('shellcmd_signals_delivered', <class 'int'>), 'SocketReceived': ('shellcmd_socket_received', <class 'int'>), 'SocketSent': ('shellcmd_socket_sent', <class 'int'>), 'Swaps': ('shellcmd_swapped', <class 'int'>), 'UserTime': ('shellcmd_user_time', <class 'gc3libs.quantity.Duration'>), 'WaitSwitches': ('shellcmd_voluntary_context_switches', <class 'int'>), 'WallTime': ('duration', <function _parse_time_duration>)}
How to translate GNU time output into values stored in the .execution attribute.

The dictionary maps key names (as used in the TIMEFMT string) to a pair (attribute name, converter
function) consisting of the name of an attribute that will be set on a task’s .execution object, and a
function to convert the (string) value gotten from GNU time output into the actual Python value written.

WRAPPER_OUTPUT_FILENAME = 'resource_usage.txt'
Name of the file where resource usage is written to.

(Relative to PRIVATE_DIR.)

108 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

WRAPPER_PID = 'wrapper.pid'
Name of the file where the wrapper script’s PID is stored.

(Relative to PRIVATE_DIR).

WRAPPER_SCRIPT = 'wrapper_script.sh'
Name of the task launcher script (within PRIVATE_DIR).

The ShellcmdLrms writes here that wrap an application’s payload script, to collect resource usage or
download/upload result files, etc.

cancel_job(app)
Kill all children processes of the given task app.

The PID of the wrapper script (which is the root of the PID tree we are going to send a “TERM” signal)
must have been stored (by submit_job()) as app.execution.lrms_jobid.

close()
Implement gracefully close on LRMS dependent resources e.g. transport

count_running_tasks()
Returns number of currently running tasks.

Note:

1. The count of running tasks includes also tasks that may have been started by another GC3Pie process
so this count can be positive when the resource has just been opened.

2. The count is updated every time the resource is updated, so the returned number can be stale if the
ShellcmdLrms.get_resource_status() has not been called for a while.

count_used_cores()
Return total nr. of cores used by running tasks.

Similar caveats as in ShellcmdLrms.count_running_tasks() apply here.

count_used_memory()
Return total amount of memory used by running tasks.

Similar caveats as in ShellcmdLrms.count_running_tasks() apply here.

free(app)
Delete the temporary directory where a child process has run. The temporary directory is removed with all
its content, recursively.

If deletion is successful, the lrms_execdir attribute in app.execution is reset to None; subsequent invoca-
tions of this method on the same applications do nothing.

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Resource
object.

get_results(app, download_dir, overwrite=False, changed_only=True)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or subdi-
rectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

2.2. Programmer Documentation 109

gc3pie Documentation, Release 2.6.8

• if changed_only is True (default), then only files for which the source has a different size or has been
modified more recently than the destination are copied;

• if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those files
such that the source is newer or different in size than the destination.

has_running_tasks()
Return True if tasks are running on the resource.

See ShellcmdLrms.count_running_tasks() for caveats about the count of “running jobs” upon
which this boolean check is based.

peek(app, remote_filename, local_file, offset=0, size=None)
Download size bytes (at offset offset from the start) from remote file remote_filename and write them into
local_file. If size is None (default), then snarf contents of remote file from offset unto the end.

First argument remote_filename is the path to a file relative to the remote job “sandbox”.

Argument local_file is either a local path name (string), or a file-like object supporting a .write() method.
If local_file is a path name, it is created if not existent, otherwise overwritten. In any case, upon exit from
this procedure, the stream will be positioned just after the written bytes.

Fourth optional argument offset is the offset from the start of the file. If offset is negative, it is interpreted
as an offset from the end of the remote file.

Any exception raised by operations will be re-raised to the caller.

submit_job(app)
Run an Application instance as a shell process.

See LRMS.submit_job

update_job_state(app)
Query the running status of the local process whose PID is stored into app.execution.lrms_jobid, and map
the POSIX process status to GC3Libs Run.State.

validate_data(data_file_list=[])
Return False if any of the URLs in data_file_list cannot be handled by this backend.

The shellcmd backend can handle the following URL schemas:

• file (natively, read/write);

• swift/swifts/swt/swts (with Python-based remote helper, read/write);

• http/https (with Python-based remote helper, read-only).

gc3libs.backends.slurm

Job control on SLURM clusters (possibly connecting to the front-end via SSH).

110 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

class gc3libs.backends.slurm.SlurmLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, fron-
tend, transport, **extra_args)

Job control on SLURM clusters (possibly by connecting via SSH to a submit node).

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Resource
object.

gc3libs.backends.slurm.count_jobs(squeue_output, whoami)
Parse SLURM’s squeue output and return a quadruple (R, Q, r, q) where:

• R is the total number of running jobs (from any user);

• Q is the total number of queued jobs (from any user);

• r is the number of running jobs submitted by user whoami;

• q is the number of queued jobs submitted by user whoami

The squeue_output must contain the results of an invocation of squeue --noheader
--format='%i^%T^%u^%U^%r^%R'.

gc3libs.backends.transport

The Transport class hierarchy provides an abstraction layer to execute commands and copy/move files irrespective of
whether the destination is the local computer or a remote front-end that we access via SSH.

gc3libs.backends.vmpool

exception gc3libs.backends.vmpool.InstanceNotFound(msg, do_log=False)
Specified instance was not found

class gc3libs.backends.vmpool.VMPool(path, connection)
Persistable container for a list of VM objects.

Holds a list of all VM IDs of inserted VMs, and a cache of the actual VM objects. If information about a VM
is requested, which is not currently in the cache, a request is made to the cloud provider API (through the conn
object passed to the constructor) to get that information.

The VMPool looks like a mixture of the set and dict interfaces:

• VMs are added to the container using the add_vm method:

| >>> vmpool.add_vm(vm1)

(There is no dictionary-like D[x]=y setter syntax, though, as that would require spelling out the VM ID.)

• VMs can be removed via the remove_vm method or the del syntax; in both cases it’s the VM ID that must
be passed:

| >>> vmpool.remove_vm(vm1)

| >>> del vmpool[vm1]

• Iterating over a VMPool instance returns the VM IDs.

• Other sequence methods work as expected: the VM info can be accessed with the usual [] lookup syntax
from its ID, the len() of a VMPool object is the total number of VM IDs registered, etc..

2.2. Programmer Documentation 111

gc3pie Documentation, Release 2.6.8

VMPool objects can be persisted using the ‘gc3libs.persistence‘:module: framework. Note however that the
VM cache will be empty upon loading a VMPool instance from persistent storage.

add_vm(vm, cache=True)
Add a VM object to the list of VMs.

get_all_vms()
Return list of all known VMs.

get_vm(vm_id, force_reload=False)
Return the VM object with id vm_id.

If it is found in the local cache, that object is returned. Otherwise a new VM object is searched for in the
EC2 endpoint.

load()
Populate list of VM IDs from the data saved on disk.

remove_vm(vm_id)
Remove VM with id vm_id from the list of known VMs. No connection to the EC2 endpoint is performed.

save()
Ensure all VM IDs will be found by the next load() call.

update(remove=False)
Synchronize list of VM IDs with contents of disk storage.

If optional argument remove is true, then remove VMs whose ID is no longer present in the on-disk storage.

gc3libs.cmdline

Base classes for GC3Libs-based scripts.

Classes implemented in this file provide common and recurring functionality for GC3Libs command-line utilities and
scripts. User applications should implement their specific behavior by subclassing and overriding a few customization
methods.

The following public classes are exported from this module:

SessionBasedScript Base class for the grosetta/ggamess/gcodeml scripts. Implements a long-running
script to submit and manage a large number of tasks grouped into a “session”.

SessionBasedDaemon Base class for GC3Pie servers. Implements a long-running daemon with XML-RPC in-
terface and support for “inboxes” (which can add or remove tasks based on external events).

DaemonClient Command-line client for interacting with instances of a SessionBasedDaemon via XML-RPC.

class gc3libs.cmdline.DaemonClient(**extra_args)
Send XML-RPC requests to a running SessionBasedDaemon.

The generic command line looks like the following:

PROG client SERVER CMD [ARG [ARG . . .]]

The SERVER string is the URL where the XML-RPC server can be contacted. A pair hostname:port is accepted
as abbreviation for http://hostname:port/ and a simple :port string is a valid alias for http://localhost:port/.
Alternatively, the SERVER argument can be the path to the daemon.url path where a running server writes
its contact information.

COMMAND is an XML-RPC command name; valid commands depend on the server and can be listed by
using help as the COMMAND string (with no further arguments). The remaining ARGs (if any) depend on
COMMAND.

112 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

pre_run()
Perform parsing of standard command-line options and call into parse_args() to do non-optional argument
processing.

Also sets up the gc3.gc3utils logger; it is controlled by the -v/--verbose command-line option.
Up to self.verbose_logging_threshold occurrences of -v are ignored, after which they start to lower the
level of messages sent to standard error output.

setup_args()
Override this method to replace standard command-line arguments.

setup_options()
Override this method to add command-line options.

class gc3libs.cmdline.SessionBasedDaemon(**extra_args)
Base class for GC3Pie daemons. Implements a long-running script that can daemonize, provides an XML-RPC
interface to interact with the current workflow and implement the concept of “inbox” to trigger the creation of
new jobs as soon as a new file is created on a folder, or is available on an HTTP(S) or SWIFT endpoint.

The generic script implements a command line like the following:

PROG [server options] INBOX [INBOX ...]

class Commands(parent)
User-visible XML-RPC methods.

Subclass this to override default methods or add new ones.

Note: Every public attribute of this class is exposed by the server; make sure that anithing which is not a
public method is prefixed with _.

kill(jobid=None)
Usage: kill JOBID

Abort execution of a task and set it to TERMINATED state.

list(*opts)
Usage: list [daemon|session] [json|text|yaml]

List IDs of tasks managed by this daemon. If the word session is present on the command-line,
then tasks stored in the session are printed instead (which may be a superset of the tasks managed by
the engine).

One of the words json, yaml, or text (simple list of IDs, one per line) can be used to choose the
output format, with text being the default.

list_details(*opts)
Usage: list_details [daemon|session] [json|text|yaml]

Give information about tasks managed by this daemon; for each task, the following information are
printed:

• task name
• execution state (e.g., NEW, RUNNING, etc.)
• process exit code (only meaningful if state is TERMINATED)
• last line in the execution log

If the word session is present on the command-line, then tasks stored in the session are printed
instead (which may be a superset of the tasks managed by the engine).

One of the words json, yaml, or text (human-readable plain text table) can be used to choose the
output format, with text being the default.

2.2. Programmer Documentation 113

gc3pie Documentation, Release 2.6.8

manage(jobid=None)
Usage: manage JOBID

Tell daemon to start actively managing a task.

redo(jobid=None, from_stage=None)
Usage: redo JOBID [STAGE]

Resubmit the task identified by JOBID. If task is a SequentialTaskCollection, then resubmit it from
the given stage (identified by its integer index in the collection; by default, sequential task collections
resume from the very first task).

Only tasks in TERMINATED state can be resubmitted; if necessary kill the task first.

remove(jobid=None)
Usage: remove JOBID

Unmanage a task and remove it from the session.

WARNING: All traces of the task are removed and it will not be possible to load or manage it again.

show(jobid=None, *attrs)
Usage: show JOBID [attributes]

Same output as ginfo -v JOBID [-p attributes]

stats(*opts)
Usage: stats [json|text|yaml]

Print how many jobs are in any given state.

One of the words json, yaml, or text (human-readable plain text table) can be used to choose the
output format, with text being the default.

unmanage(jobid=None)
Usage: unmanage JOBID

Tell daemon to stop actively managing a task.

The task will keep its state until the daemon is told to manage it again. In particular, tasks that are in
RUNNING state keep running and may complete even while unmanaged.

class Server(parent, commands=None, addr=’localhost’, port=0, portfile=None)

hello()
Print server URL.

Probably only useful for checking if the server is up and responsive.

start()
Start serving requests.

Calls into this method never return, so it should be run in a separate thread.

stop()
Shut down the XML-RPC server and remove the URL file.

created(inbox, subject)
React to creation of subject in inbox.

A typical scenario is this: a new file is created in a watched directory; this method could then react by
creating a new task to process that file.

This method should be overridden in derived classes, as the default implementation does nothing.

114 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

deleted(inbox, subject)
React to removal of subject from inbox.

This method should be overridden in derived classes, as the default implementation does nothing.

help(cmd=None)
Show available commands, or get information about a specific command.

modified(inbox, subject)
React to modification of subject in inbox.

Note: Not all Pollers are capable of generating modified events reliably. This method is provided for
completeness, but likely only useful for filesystem-watching inboxes.

This method should be overridden in derived classes, as the default implementation does nothing.

parse_args()
Do any parsing of the command-line arguments before the main loop starts. This is the place to check va-
lidity of the parameters passed as command-line arguments, and to perform setup of shared data structures
and default values.

The default implementation does nothing; you are free to override this method in derived classes.

setup()
Setup standard command-line parsing.

GC3Libs scripts should probably override setup_args() to modify command-line parsing.

setup_args()
Set up command-line argument parsing.

The default command line parsing considers every argument as an (input) path name; processing of the
given path names is done in parse_args()

setup_options()
Override this method to add command-line options.

shutdown()
Terminate daemon.

terminate(exc_type=None, exc_value=None, tb=None)
Called to stop the script from running.

By default this does nothing; override in derived classes.

class gc3libs.cmdline.SessionBasedScript(**extra_args)
Base class for grosetta/ggamess/gcodeml and like scripts. Implements a long-running script to submit
and manage a large number of jobs grouped into a “session”.

The generic scripts implements a command-line like the following:

PROG [options] INPUT [INPUT ...]

First, the script builds a list of input files by recursively scanning each of the given INPUT arguments for files
matching the self.input_file_pattern glob string (you can set it via a keyword argument to the ctor). To perform
a different treatment of the command-line arguments, override the process_args() method.

Then, new jobs are added to the session, based on the results of the process_args() method above. For each
tuple of items returned by process_args(), an instance of class self.application (which you can set by a keyword
argument to the ctor) is created, passing it the tuple as init args, and added to the session.

2.2. Programmer Documentation 115

gc3pie Documentation, Release 2.6.8

The script finally proceeds to updating the status of all jobs in the session, submitting new ones and retrieving
output as needed. When all jobs are done, the method done() is called, and its return value is used as the
script’s exit code.

The script’s exitcode tracks job status, in the following way. The exitcode is a bitfield; only the 4 least-significant
bits are used, with the following meaning:

Bit Meaning
0 Set if a fatal error occurred: the script could not complete
1 Set if there are jobs in FAILED state
2 Set if there are jobs in RUNNING or SUBMITTED state
3 Set if there are jobs in NEW state

This boils down to the following rules:

• exitcode == 0: all jobs terminated successfully, no further action

• exitcode == 1: an error interrupted script execution

• exitcode == 2: all jobs terminated, not all of them successfully

• exitcode > 3: run the script again to progress jobs

new_tasks(extra)
Iterate over jobs that should be added to the current session. Each item yielded must be a valid Task
instance.

This method is called by the default process_args(), passing self.extra as the extra parameter.

The default implementation of this method scans the arguments on the command-line for files matching
the glob pattern self.input_filename_pattern, and for each matching file returns a job name formed by the
base name of the file (sans extension), the class given by self.application, and the full path to the input file
as sole argument.

If self.instances_per_file and self.instances_per_job are set to a value other than 1, for each matching file
N jobs are generated, where N is the quotient of self.instances_per_file by self.instances_per_job.

See also: process_args()

pre_run()
Perform parsing of standard command-line options and call into parse_args() to do non-optional argument
processing.

print_summary_table(output, stats)
Print a text summary of the session status to output. This is used to provide the “normal” output of the
script; when the -l option is given, the output of the print_tasks_table function is appended.

Override this in subclasses to customize the report that you provide to users. By default, this prints a table
with the count of tasks for each possible state.

The output argument is a file-like object, only the write method of which is used. The stats argument is
a dictionary, mapping each possible Run.State to the count of tasks in that state; see Engine.counts for a
detailed description.

print_tasks_table(output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’ encoding=’UTF-
8’>, states=Enum({’RUNNING’, ’NEW’, ’STOPPED’, ’SUBMITTED’, ’TER-
MINATING’, ’UNKNOWN’, ’TERMINATED’}), only=<class ’object’>)

Output a text table to stream output, giving details about tasks in the given states.

Optional second argument states restricts the listing to tasks that are in one of the specified states. By
default, all task states are allowed. The states argument should be a list or a set of Run.State values.

116 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Optional third argument only further restricts the listing to tasks that are instances of a subclass of only.
By default, there is no restriction and all tasks are listed. The only argument can be a Python class or a
tuple – anything infact, that you can pass as second argument to the isinstance operator.

Parameters

• output – An output stream (file-like object)

• states – List of states (Run.State items) to consider.

• only – Root class (or tuple of root classes) of tasks to consider.

setup()
Setup standard command-line parsing.

GC3Libs scripts should probably override setup_args() to modify command-line parsing.

setup_args()
Set up command-line argument parsing.

The default command line parsing considers every argument as an (input) path name; processing of the
given path names is done in parse_args()

gc3libs.cmdline.nonnegative_int(num)
Raise ArgumentTypeError if num is a negative integer (<0), and return int(num) otherwise. num can be any
object which can be converted to an int.

>>> nonnegative_int('1')
1
>>> nonnegative_int(1)
1
>>> try:
... nonnegative_int('-1')
... except argparse.ArgumentTypeError as err:
... print(err)
'-1' is not a non-negative integer number.
>>> try:
... nonnegative_int(-1)
... except argparse.ArgumentTypeError as err:
... print(err)
'-1' is not a non-negative integer number.

Please note that 0 and ‘-0’ are ok:

>>> nonnegative_int(0)
0
>>> nonnegative_int(-0)
0
>>> nonnegative_int('0')
0
>>> nonnegative_int('-0')
0

Floats are ok too:

>>> nonnegative_int(3.14)
3
>>> nonnegative_int(0.1)
0

2.2. Programmer Documentation 117

gc3pie Documentation, Release 2.6.8

>>> try:
... nonnegative_int('ThisWillRaiseAnException')
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'ThisWillRaiseAnException' is not a non-negative ...

gc3libs.cmdline.positive_int(num)
Raise ArgumentTypeError if num is not a strictly positive integer (>0) and return int(num) otherwise. num can
be any object which can be converted to an int.

>>> positive_int('1')
1
>>> positive_int(1)
1
>>> try:
... positive_int('-1')
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'-1' is not a positive integer number.
>>> try:
... positive_int(-1)
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'-1' is not a positive integer number.
>>> try:
... positive_int(0)
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'0' is not a positive integer number.

Floats are ok too:

>>> positive_int(3.14)
3

but please take care that float greater than 0 but still less than 1 will fail:

>>> try:
... positive_int(0.1)
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'0.1' is not a positive integer number.

Also note that 0 is not OK:

>>> try:
... positive_int(-0)
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'0' is not a positive integer number.
>>> try:
... positive_int('0')
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'0' is not a positive integer number.
>>> try:
... positive_int('-0')

(continues on next page)

118 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

... except argparse.ArgumentTypeError as err:

... print(err) # doctest:+ELLIPSIS
'-0' is not a positive integer number.

Any string which does cannot be converted to an integer will fail:

>>> try:
... positive_int('ThisWillRaiseAnException')
... except argparse.ArgumentTypeError as err:
... print(err) # doctest:+ELLIPSIS
'ThisWillRaiseAnException' is not a positive integer ...

gc3libs.config

Deal with GC3Pie configuration files.

class gc3libs.config.Configuration(*locations, **extra_args)
In-memory representation of the GC3Pie configuration.

This class provides facilities for:

• parsing configuration files (methods load() and merge_file());

• parsing a configuration from a python dictionary (method construct_from_cfg_dict());

• validating the loaded values;

• instanciating the internal GC3Pie objects resulting from the configuration (methods make_auth() and
make_resource()).

The constructor takes a list of files to load (locations), a python dictionary of sections with key value pairs
(cfg_dict), and a list of key=value pairs to provide defaults for the configuration. All three arguments are optional
and can be omitted, resulting in a configuration containing only GC3Pie default values. If locations is not
empty but there are no config files at those locations, the constructor will raise a NoAccessibleConfigurationFile
exception if cfg_dict is None.

Example 1: initialization from config file:

>>> import os
>>> example_cfgfile = os.path.join(
... os.path.dirname(__file__), 'etc/gc3pie.conf.example')
>>> cfg = Configuration(example_cfgfile)
>>> cfg.debug
'0'

Example 2: initialization from a Python dictionary:

>>> d = dict()
>>> d["DEFAULT"] = {"debug": 0}
>>> d["auth/ssh_bob"] = {
... "type": "ssh", "username": "your_ssh_user_name_on_computer_bob"}
>>> cfg = Configuration(cfg_dict=d)
>>> cfg.debug
0
>>> cfg.auths["ssh_bob"]["type"] == 'ssh'
True

Example 3: initialization from key=value list:

2.2. Programmer Documentation 119

gc3pie Documentation, Release 2.6.8

>>> cfg = Configuration(auto_enable_auth=False, foo=1, bar='baz')
>>> cfg.auto_enable_auth
False
>>> cfg.foo == 1
True
>>> cfg.bar == 'baz'
True

When all three arguments are supplied, configuration options are taken in the following order of precedence: *
config file [highest priority], * Python dictionary [middle priority], * key=value list [lowest priority]

>>> # config file > Python dictionary
... d = {"DEFAULTS": {"debug": 1}}
>>> cfg = Configuration(example_cfgfile, config_dict=d)
>>> cfg.debug == '0'
True
>>>
>>> # config file > key=value list
... cfg = Configuration(example_cfgfile, debug=1)
>>> cfg.debug == '0'
True
>>>
>>> # Python dictionary > key=value list
... cfg = Configuration(config_dict=d, debug=0)
>>> cfg.debug == '0'
False

Example 4: default initialization:

>>> cfg = Configuration()
>>> cfg.auto_enable_auth
True

auth_factory
The instance of gc3libs.authentication.Auth used to manage auth access for the resources.

This is a read-only attribute, created upon first access with the values set in self.auths and
self.auto_enabled.

construct_from_cfg_dict(cfg_dict, filename=None)
Create a Configuration object from the settings defined in cfg_dict.

Parameter cfg_dict may either be a Python dictionary, having the same general format as a configuration
file, or a ConfigParser instance into which an INI-format configuration file has been read. See below for
an example of a configuration file converted to a dictionary.

Parameters

• cfg_dict (dict) – The Python dictionary to load settings from.

• filename (string) – Optional. If this dictionary was constructed from

a config file, filename is the name of the config file.

Example: A Configuration File:

[auth/ssh]
type = ssh
username = gc3pie

(continues on next page)

120 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

[resource/test]
type = shellcmd
auth = ssh
transport = local
max_memory_per_core = 2
max_walltime = 8
max_cores = 2
architecture = x86_64
override = False

[DEFAULT]
max_cores_per_job = 2

Example: Equivalent Dictionary:

>>> cfg_dict = {
... 'auth/ssh': {
... 'type': 'ssh',
... 'username': 'gc3pie'
... },
... 'resource/test': {
... 'type': 'shellcmd',
... 'auth': 'ssh',
... 'transport': 'local',
... 'max_memory_per_core': '2',
... 'max_walltime': '8',
... 'max_cores': '2',
... 'architecture': 'x86_64',
... 'override': 'False'
... },
... 'DEFAULT': {
... 'max_cores_per_job': '2'
... }
... }
>>>

load(*locations)
Merge settings from configuration files into this Configuration instance.

Environment variables and ~ references are expanded in the location file names.

If any of the specified files does not exist or cannot be read (for whatever reason), a message is logged but
the error is ignored. However, a NoConfigurationFile exception is raised if none of the specified locations
could be read.

Raises gc3libs.exceptions.NoConfigurationFile – if none of the specified files
could be read.

make_auth(name)
Return factory for auth credentials configured in section [auth/name].

make_resources(ignore_errors=True)
Make backend objects corresponding to the configured resources.

Return a dictionary, mapping the resource name (string) into the corresponding backend object.

By default, errors in constructing backends (e.g., due to a bad configuration) are silently ignored: the of-
fending configuration is just dropped. This can be changed by setting the optional argument ignore_errors
to False: in this case, an exception is raised whenever we fail to construct a backend.

2.2. Programmer Documentation 121

gc3pie Documentation, Release 2.6.8

merge_file(filename)
Read configuration files and merge the settings into this Configuration object.

Contrary to load() (which see), the file name is taken literally and an error is raised if the file cannot be
read for whatever reason.

Any parameter which is set in the configuration files’ [DEFAULT] section, and whose name does not start
with underscore (_) defines an attribute in the current Configuration.

Warning: No type conversion is performed on values set this way - so they all end up being strings!

Raises gc3libs.exceptions.ConfigurationError – if the configuration file does
not exist, cannot be read, is corrupt or has wrong format.

gc3libs.core

Top-level classes for task execution and control.

class gc3libs.core.BgEngine(lib, *args, **kwargs)
Run a GC3Pie Engine instance in the background.

A BgEngine exposes the same interface as a regular Engine class, but proxies all operations for asynchronous
execution by the wrapped Engine instance. In practice, this means that all invocations of Engine operations on
a BgEngine always succeed: errors will only be visible in the background thread of execution.

add(task)
Proxy to Engine.add() (which see).

static at_most_once_per_cycle(fn)
Ensure the decorated function is not executed more than once per each poll interval.

Cached results are returned instead, if Engine.progress() has not been called in between two separate
invocations of the wrapped function.

Warning: Keyword arguments are ignored when doing a lookup for previously-cached function re-
sults. This means that the following expressions might all return the same cached value:

f(), f(foo=1), f(bar=2, baz='a')

close()
Proxy to Engine.close() (which see).

counts(only=<class ’gc3libs.Task’>)
Proxy to Engine.counts() (which see).

fetch_output(task, output_dir=None, overwrite=False, changed_only=True, **extra_args)
Proxy to Engine.fetch_output() (which see).

find_task_by_id(task_id)
Proxy to Engine.find_task_by_id() (which see).

free(task, **extra_args)
Proxy to Engine.free() (which see).

get_backend(name)
Proxy to Engine.get_backend() (which see).

122 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

get_resources()
Proxy to Engine.get_resources() (which see).

iter_tasks()
Proxy to Engine.iter_tasks() (which see).

kill(task, **extra_args)
Proxy to Engine.kill() (which see).

peek(task, what=’stdout’, offset=0, size=None, **extra_args)
Proxy to Engine.peek() (which see).

progress()
Proxy to Engine.progress.

If the background thread is already running, this is a no-op, as progressing tasks is already taken care of
by the background thread. Otherwise, just forward the call to the wrapped engine.

remove(task)
Proxy to Engine.remove() (which see).

select_resource(match)
Proxy to Engine.select_resource() (which see).

start(interval)
Start triggering the main loop at the given interval frequency.

Parameters interval (gc3libs.quantity.Duration) – Time span between succes-
sive calls of _perform()

stats(only=None)
Proxy to Engine.stats() (which see).

stop(wait=False)
Stop background execution of the main loop.

Call start() to resume running.

Parameters wait (bool) – When True, wait until all pending actions on the background
thread have been completed.

submit(task, resubmit=False, targets=None, **extra_args)
Proxy to Engine.submit() (which see).

trigger_after_progress(func, *args, **kwargs)
Call a function after running Engine.progress() in the main loop. Exceptions raised during the call will be
logged at WARNING level but otherwise ignored.

The function call will be triggered only once at the next run of the main loop; it will not be fired repeatedly
at every re-run of the main loop.

Any suppplemental positional arguments or keyword-arguments that are supplied will be passed un-
changed to the trigger function.

trigger_before_progress(func, *args, **kwargs)
Call a function before running Engine.progress() in the main loop. Exceptions raised during the call will
be logged at WARNING level but otherwise ignored.

The function call will be triggered only once at the next run of the main loop; it will not be fired repeatedly
at every re-run of the main loop.

Any suppplemental positional arguments or keyword-arguments that are supplied will be passed un-
changed to the trigger function.

2.2. Programmer Documentation 123

gc3pie Documentation, Release 2.6.8

update_job_state(*tasks, **extra_args)
Proxy to Engine.update_job_state() (which see).

class gc3libs.core.Core(cfg, matchmaker=<gc3libs.core.MatchMaker object>, re-
source_errors_are_fatal=None)

Core operations: submit, update state, retrieve (a snapshot of) output, cancel job.

Core operations are blocking, i.e., they return only after the operation has successfully completed, or an error
has been detected.

Operations are always performed by a Core object. Core implements an overlay Grid on the resources specified
in the configuration file.

Initialization of a Core instance also initializes all resources in the passed Configuration in-
stance. By default, GC3Pie’s Core objects will ignore errors in initializing resources, and only
raise an exception if no resources can be initialized. This can be changed by either passing an
optional argument resource_errors_are_fatal=True, or by setting the environmental variable
GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL to yes or 1.

add(task)
This method is here just to allow Core and Engine objects to be used interchangeably. It’s effectively a
no-op, as it makes no sense in the synchronous/blocking semantics implemented by Core.

close()
Used to invoke explicitly the destructor on objects e.g. LRMS

fetch_output(app, download_dir=None, overwrite=False, changed_only=True, **extra_args)
Retrieve output into local directory app.output_dir.

If the task is not expected to produce any output (i.e., app.would_output == False) then the only effect of
this is to advance the state of TERMINATING tasks to TERMINATED.

Optional argument download_dir overrides the download location.

The download directory is created if it does not exist. If it already exists, and the optional argument
overwrite is False (default), it is renamed with a .NUMBER suffix and a new empty one is created in its
place. Otherwise, if ‘overwrite‘ is True, files are downloaded over the ones already present; in this case,
the changed_only argument controls which files are overwritten:

• if changed_only is True (default), then only files for which the source has a different size or has been
modified more recently than the destination are copied;

• if changed_only is False, then all files in source will be copied into destination, unconditionally.

Source files that do not exist at destination will be copied, independently of the overwrite and
changed_only settings.

If the task is in TERMINATING state, the state is changed to TERMINATED, attribute output_dir is
set to the absolute path to the directory where files were downloaded, and the terminated transition method
is called on the app object.

Task output cannot be retrieved when app.execution is in one of the states NEW or SUBMITTED; an
OutputNotAvailableError exception is thrown in these cases.

Raise gc3libs.exceptions.OutputNotAvailableError if no output can be fetched from the remote
job (e.g., the Application/Task object is in NEW or SUBMITTED state, indicating the remote
job has not started running).

free(app, **extra_args)
Free up any remote resources used for the execution of app. In particular, this should delete any remote
directories and files.

124 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

It is an error to call this method if app.execution.state is anything other than TERMINATED: an Invalid-
Operation exception will be raised in this case.

Raise gc3libs.exceptions.InvalidOperation if app.execution.state differs from
Run.State.TERMINATED.

get_resources(**extra_args)
Return list of resources configured into this Core instance.

kill(app, **extra_args)
Terminate a job.

Terminating a job in RUNNING, SUBMITTED, or STOPPED state entails canceling the job with the
remote execution system; terminating a job in the NEW or TERMINATED state is a no-op.

peek(app, what=’stdout’, offset=0, size=None, **extra_args)
Download size bytes (at offset bytes from the start) from the remote job standard output or error stream,
and write them into a local file. Return file-like object from which the downloaded contents can be read.

If size is None (default), then snarf all available contents of the remote stream from offset unto the end.

The only allowed values for the what arguments are the strings ‘stdout’ and ‘stderr’, indicating that the
relevant section of the job’s standard output resp. standard error should be downloaded.

remove(task)
This method is here just to allow Core and Engine objects to be used interchangeably. It’s effectively a
no-op, as it makes no sense in the synchronous/blocking semantics implemented by Core.

select_resource(match)
Disable resources that do not satisfy predicate match. Return number of enabled resources.

Argument match can be:

• either a function (or a generic callable) that is passed each Resource object in turn, and should return
a boolean indicating whether the resources should be kept (True) or not (False);

• or it can be a string: only resources whose name matches (wildcards * and ? are allowed) are retained.

Note: Calling this method modifies the configured list of resources in-place.

submit(app, resubmit=False, targets=None, **extra_args)
Submit a job running an instance of the given task app.

Upon successful submission, call the submitted method on the app object. If targets are given, submission
of the task is attempted to the resources in the order given; the submit method returns after the first suc-
cessful attempt. If targets is None (default), a brokering procedure is run to determine the best resource
among the configured ones.

At the beginning of the submission process, the app.execution state is reset to NEW; if submission is suc-
cessful, the task will be in SUBMITTED or RUNNING state when this call returns.

Raise gc3libs.exceptions.InputFileError if an input file does not exist or cannot otherwise be
read.

Parameters

• app (Task) – A GC3Pie Task instance to be submitted.

• resubmit – If True, submit task regardless of its execution state; if False (default),
submission is a no-op if task is not in NEW state.

2.2. Programmer Documentation 125

gc3pie Documentation, Release 2.6.8

• targets – A list of Resource‘s to submit the task to; resources are tried in the order
given. If ‘‘None‘ (default), perform brokering among all the configured resources.

update_job_state(*apps, **extra_args)
Update state of all applications passed in as arguments.

If keyword argument update_on_error is False (default), then application execution state is not changed
in case a backend error happens; it is changed to UNKNOWN otherwise.

Note that if state of a job changes, the Run.state calls the appropriate handler method on the applica-
tion/task object.

Raise gc3libs.exceptions.InvalidArgument in case one of the passed Application or Task objects
is invalid. This can stop updating the state of other objects in the argument list.

Raise gc3libs.exceptions.ConfigurationError if the configuration of this Core object is invalid or
otherwise inconsistent (e.g., a resource references a non-existing auth section).

update_resources(resources=<built-in function all>, **extra_args)
Update the state of a given set of resources.

Each resource object in the returned list will have its updated attribute set to True if the update operation
succeeded, or False if it failed.

Optional argument resources should be a subset of the resources configured in this Core instance (the
actual Lrms objects, not the resource names). By default, all configured resources are updated.

class gc3libs.core.Engine(controller, tasks=[], store=None, can_submit=True, can_retrieve=True,
max_in_flight=0, max_submitted=0, output_dir=None, sched-
uler=<gc3libs.core.scheduler object>, retrieve_running=False,
retrieve_overwrites=False, retrieve_changed_only=True, for-
get_terminated=False)

Manage a collection of tasks, until a terminal state is reached. Specifically:

• tasks in NEW state are submitted;

• the state of tasks in SUBMITTED, RUNNING or STOPPED state is updated;

• when a task reaches TERMINATED state, its output is downloaded.

The behavior of Engine instances can be further customized by setting the following instance attributes:

can_submit Boolean value: if False, no task will be submitted.

can_retrieve Boolean value: if False, no output will ever be retrieved.

max_in_flight If >0, limit the number of tasks in SUBMITTED or RUNNING state: if the number of tasks in
SUBMITTED, RUNNING or STOPPED state is greater than max_in_flight, then no new submissions will
be attempted.

max_submitted If >0, limit the number of tasks in SUBMITTED state: if the number of tasks in SUBMITTED
state is greater than max_submitted, then no new submissions will be attempted.

output_dir Base directory for job output; if not None, each task’s results will be downloaded in a subdirectory
named after the task’s permanent_id.

scheduler A factory function for creating objects that conform to the Scheduler interface to control task submis-
sion; see the Scheduler documentation for details. The default value implements a first-come first-serve
algorithm: tasks are submitted in the order they have been added to the Engine.

retrieve_running If True, snapshot output from RUNNING jobs at every invocation of progress()

retrieve_overwrites If True, overwrite files in the output directory of any job (as opposed to moving destination
away and downloading a fresh copy). See Core.fetch_output() for details.

126 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

retrieve_changed_only If both this and overwrite are True, then only changed files are downloaded. See
Core.fetch_output() for details.

forget_terminated When True, Engine.remove() is automatically called on tasks when their state turns
to TERMINATED.

Warning: For historical reasons, the default for this option is False but this can (and should!) be
changed in future releases.

Any of the above can also be set by passing a keyword argument to the constructor (assume g is a Core
instance):

| >>> e = Engine(g, can_submit=False)
| >>> e.can_submit
| False

add(task)
Add task to the list of tasks managed by this Engine. Adding a task that has already been added to this
Engine instance results in a no-op.

close()
Call explicilty finalize methods on relevant objects e.g. LRMS

counts(only=<class ’gc3libs.Task’>)
Return a dictionary mapping each state name into the count of tasks in that state. In addition, the following
keys are defined:

• ok: count of TERMINATED tasks with return code 0

• failed: count of TERMINATED tasks with nonzero return code

• total: total count of managed tasks, whatever their state

If the optional argument only is not None, tasks whose whose class is not contained in only are ignored.

: param class only: Restrict counting to tasks of these classes.

fetch_output(task, output_dir=None, overwrite=False, changed_only=True, **extra_args)
Enqueue task for later output retrieval.

Warning: FIXME

The output_dir, overwrite, and changed_only parameters are currently ignored.

find_task_by_id(task_id)
Return the task with the given persistent ID added to this Engine instance. If no task has that ID, raise a
KeyError.

free(task, **extra_args)
Proxy for Core.free, which see.

get_resources()
Return list of resources configured into this Core instance.

init_counts_for(cls)
Initialize counters for tasks of class cls.

All statistics are initially computed starting from the current collection of tasks managed by this Engine
instance; they will be kept up-to-date during task addition/removal/progress.

2.2. Programmer Documentation 127

gc3pie Documentation, Release 2.6.8

Warning: In a future release, the Engine might forget about task objects in TERMINATED state.
Therefore, init_counts_for should be called before any tasks reaches TERMINATED state, or the counts
for TERMINATED, ok, and failed jobs will be incorrectly initialized to 0.

iter_tasks(only_cls=None)
Iterate over tasks managed by the Engine.

If argument only_cls is None (default), then iterate over all tasks managed by this Engine. Otherwise,
only return tasks which are instances of a (sub)class only_cls.

kill(task, **extra_args)
Schedule a task for killing on the next progress run.

peek(task, what=’stdout’, offset=0, size=None, **extra_args)
Proxy for Core.peek (which see).

progress()
Update state of all registered tasks and take appropriate action. Specifically:

• tasks in NEW state are submitted;

• the state of tasks in SUBMITTED, RUNNING, STOPPED or UNKNOWN state is updated;

• when a task reaches TERMINATING state, its output is downloaded.

• tasks in TERMINATED status are simply ignored.

The max_in_flight and max_submitted limits (if >0) are taken into account when attempting submission of
tasks.

redo(task, *args, **kwargs)
Reset task’s state to NEW so that it will be re-run.

Any additional arguments will be forwarded to the task’s own .redo() method; this is useful, e.g., to perform
partial re-runs of SequentialTaskCollection instances.

remove(task)
Remove a task from the list of tasks managed by this Engine.

Removing a task that is not managed (i.e., already removed or never added) is a no-op.

resources
Get dict of configured resources.

This mapping object has configured resource names as keys, and the actual gc3libs.backends.LRMS in-
stances as values. Note that only resources whose .enabled attribute evaluates to True will be consid-
ered for scheduling.

This is just a reference to the .resources attribute of the underlying core object; see Core.resources for
more information.

select_resource(match)
Disable resources that do not satisfy predicate match. Return number of enabled resources.

Argument match can be:

• either a function (or a generic callable) that is passed each Resource object in turn, and should return
a boolean indicating whether the resources should be kept (True) or not (False);

• or it can be a string: only resources whose name matches (wildcards * and ? are allowed) are retained.

128 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Note: Calling this method modifies the configured list of resources in-place.

stats(only=None)
Please use counts() instead.

Warning: This is deprecated since GC3Pie version 2.5.

submit(task, resubmit=False, targets=None, **extra_args)
Submit task at the next invocation of progress.

The task state is reset using the task’s own method .redo(), and then the task added to the collection of
managed tasks. Note that the use of redo() implies that only tasks in a terminal state can be resubmitted!

The targets argument is only present for interface compatiblity with Core.submit() but is otherwise
ignored.

update_job_state(*tasks, **extra_args)
Return list of current states of the given tasks. States will only be updated at the next invocation of
progress; in particular, no state-change handlers are called as a result of calling this method.

class gc3libs.core.MatchMaker
Select and sort resources for attempting submission of a Task.

A match-making algorithm must implement two methods:

• filter: given a task and a list of resources, return the list of resources that the given task could be submitted
to.

• rank: given a task and a list of resources, return a list of resources sorted in preference order, i.e., submis-
sion of the given task will be attempted to the first returned resource, then the next one, etc.

This class implements the default match-making algorithm in GC3Pie, which operates as follows:

• filter phase: if task has a compatible_resources method (as instances of Application do), retain only
those resources where it evaluates to True. Otherwise, return the resources list unchanged.

• rank phase: sort resources according to the task’s rank_resources method, or retain the given order if task
does not define such method.

filter(task, resources)
Return the subset of resources to which task could be submitted to.

Note that the result subset could be empty (no resource can accomodate task’s requirements).

The default implementation uses the task’s compatible_resources method to retain only the resources that
satisfy the task’s requirements. If task does not provide such a method, the resource list is returned un-
changed.

rank(task, resources)
Sort the list of resources in the preferred order for submitting task.

Unless overridden in a derived class, this calls the task’s rank_resources method to sort the list. If the task
does not provide such a method, the resources list is returned unchanged.

class gc3libs.core.Scheduler(tasks, resources)
Instances of the Scheduler class are used in Engine.progress() to determine what tasks (among those in
Run.State.NEW state) are to be submitted.

A Scheduler object must implement both the context protocol and the iterator protocol.

2.2. Programmer Documentation 129

http://goo.gl/SvWWyw
http://goo.gl/ue2zje

gc3pie Documentation, Release 2.6.8

The way a Scheduler instance is actually used within Engine is as follows:

0. A Scheduler instance is created, passing it two arguments: a list of tasks in NEW state, and a dictionary of
configured resources (keys are resource names, values are actual resource objects).

1. When a new submission cycle starts, the __enter__() method is called.

2. The Engine iterates by repeatedly calling the next() method to receive tasks to be submitted. The
send() and throw()methods are used to notify the scheduler of the outcome of the submission attempt.

3. When the submission cycle ends, the __exit__() method is called.

The Scheduler.schedule generator is the heart of the submission process and has basically complete control over
it. It is initialized with the list of tasks in NEW state, and the list of configured resources. The next() method
should yield pairs (task index, resource name), where the task index is the position of the task to be submitted
next in the given list, and –similarly– the resource name is the name of the resource to which the task should be
submitted.

For each pair yielded, submission of that task to the selected resource is attempted; the state of the task object
after submission is sent back (via the send() method) to the Scheduler instance; if an exception is raised, that
exception is thrown (via the throw() method) into the scheduler object instead. Submission stops when the
next() call raises a StopIteration exception.

class gc3libs.core.scheduler(fn)
Decorate a generator function for use as a Scheduler object.

gc3libs.debug

Tools for debugging GC3Libs based programs.

Part of the code used in this module originally comes from:

• http://wordaligned.com/articles/echo

gc3libs.debug.format_arg_value(arg_val)
Return a string representing a (name, value) pair.

Example:

>>> 'x=(1, 2, 3)' == format_arg_value(('x', (1, 2, 3)))
True

gc3libs.debug.is_class_private_name(name)
Determine if a name is a class private name.

gc3libs.debug.is_classmethod(instancemethod)
Determine if an instancemethod is a classmethod.

gc3libs.debug.method_name(method)
Return a method’s name.

This function returns the name the method is accessed by from outside the class (i.e. it prefixes “private”
methods appropriately).

gc3libs.debug.name(item)
Return an item’s name.

gc3libs.debug.trace(fn, log=<bound method Logger.debug of <Logger gc3.gc3libs (WARNING)>>)
Logs calls to a function.

Returns a decorated version of the input function which “echoes” calls made to it by writing out the function’s
name and the arguments it was called with.

130 Chapter 2. Table of Contents

http://wordaligned.com/articles/echo

gc3pie Documentation, Release 2.6.8

gc3libs.debug.trace_class(cls, log=<bound method Logger.debug of <Logger gc3.gc3libs (WARN-
ING)>>)

Trace calls to class methods and static functions

gc3libs.debug.trace_instancemethod(cls, method, log=<bound method Logger.debug of <Log-
ger gc3.gc3libs (WARNING)>>)

Change an instancemethod so that calls to it are traced.

Replacing a classmethod is a little more tricky. See: http://www.python.org/doc/current/ref/types.html

gc3libs.debug.trace_module(mod, log=<bound method Logger.debug of <Logger gc3.gc3libs
(WARNING)>>)

Trace calls to functions and methods in a module.

gc3libs.defaults

A namespace for constants and default values used in the GC3Libs package.

gc3libs.defaults.CONFIG_FILE_LOCATIONS = ['/etc/gc3/gc3pie.conf', '$VIRTUAL_ENV/etc/gc3/gc3pie.conf', '/home/docs/.gc3/gc3pie.conf']
List of filesystem locations where config files would be read from.

gc3libs.defaults.JOBS_DIR = '/home/docs/.gc3/jobs'
Default session directory for GC3Utils.

Warning: Use of this global default session is deprecated.

gc3libs.defaults.LSF_CACHE_TIME = 30
Time (in seconds) to cache lshosts/bjobs information for.

gc3libs.defaults.RCDIR = '/home/docs/.gc3'
Default directory where all GC3Pie-related files are stored.

gc3libs.defaults.SPOOLDIR = '$HOME/.gc3pie_jobs'
Top-level path for the working directory of jobs.

On batch systems, this should be visible from both the frontend and the compute nodes.

gc3libs.defaults.VM_OS_OVERHEAD = Memory(512, unit=MiB)
Subtract this amount from the available total memory, when creating resource configuration from cloud-based
VMs.

gc3libs.events

Support for communication between parts of code through “events”.

This file collects definitions of event classes used across the library code. The actual subscription and notification
mechanisms come from the implementation of the Observable/Observer pattern provided by Python’s library generic.

gc3libs.exceptions

Exceptions specific to the gc3libs package.

In addition to the exceptions listed here, gc3libs functions try to use Python builtin exceptions with the same
meaning they have in core Python, namely:

• TypeError is raised when an argument to a function or method has an incompatible type or does not implement
the required protocol (e.g., a number is given where a sequence is expected).

2.2. Programmer Documentation 131

http://www.python.org/doc/current/ref/types.html
https://en.wikipedia.org/wiki/Observer_pattern
http://generic.readthedocs.io/en/latest/event_system.html#event-system

gc3pie Documentation, Release 2.6.8

• ValueError‘is raised when an argument to a function or method has the correct type, but fails to satisfy other
constraints in the function contract (e.g., a positive number is required, and ‘-1 is passed instead).

• AssertionError is raised when some internal assumption regarding state or function/method calling contract is
violated. Informally, this indicates a bug in the software.

exception gc3libs.exceptions.ApplicationDescriptionError(msg, do_log=True)
Raised when the dumped description on a given Application produces something that the LRMS backend cannot
process.

exception gc3libs.exceptions.AuthError(msg, do_log=False)
Base class for Auth-related errors.

Should never be instanciated: create a specific error class describing the actual error condition.

exception gc3libs.exceptions.AuxiliaryCommandError(msg, do_log=False)
Raised when some external command that we depend upon has failed.

For instance, we might need to list processes on a remote machine but ps aux does not run because of insuffi-
cient privileges.

exception gc3libs.exceptions.ConfigurationError(msg, do_log=True)
Raised when the configuration file (or parts of it) could not be read/parsed. Also used to signal that a required
parameter is missing or has an unknown/invalid value.

exception gc3libs.exceptions.ConfigurationFileError(msg, do_log=True)
Generic issue with the configuration file(s).

exception gc3libs.exceptions.CopyError(source, destination, ex)
Error copying a file from source to destination.

exception gc3libs.exceptions.DataStagingError(msg, do_log=False)
Base class for data staging and movement errors.

Should never be instanciated: create a specific error class describing the actual error condition.

exception gc3libs.exceptions.DetachedFromControllerError(msg, do_log=False)
Raised when a method (other than attach()) is called on a detached Task instance.

exception gc3libs.exceptions.DuplicateEntryError(msg, do_log=False)
Raised by Application.__init__ if not all (local or remote) entries in the input or output files are distinct.

exception gc3libs.exceptions.Error(msg, do_log=False)
Base class for all error-level exceptions in GC3Pie.

Generally, this indicates a non-fatal error: depending on the nature of the task, steps could be taken to continue,
but users must be aware that an error condition occurred, so the message is sent to the logs at the ERROR level.

Exceptions indicating an error condition after which the program cannot continue and should immediately stop,
should use the FatalError base class.

exception gc3libs.exceptions.FatalError(msg, do_log=True)
A fatal error: execution cannot continue and program should report to user and then stop.

The message is sent to the logs at CRITICAL level when the exception is first constructed.

This is the base class for all fatal exceptions.

exception gc3libs.exceptions.InputFileError(msg, do_log=True)
Raised when an input file is specified, which does not exist or cannot be read.

exception gc3libs.exceptions.InternalError(msg, do_log=False)
Raised when some function cannot fulfill its duties, for reasons that do not depend on the library client code.
For instance, when a response string gotten from an external command cannot be parsed as expected.

132 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

exception gc3libs.exceptions.InvalidArgument(msg, do_log=False)
Raised when the arguments passed to a function do not honor some required contract. For instance, either one
of two optional arguments must be provided, but none of them was.

exception gc3libs.exceptions.InvalidOperation(msg, do_log=False)
Raised when an operation is attempted, that is not considered valid according to the system state. For instance,
trying to retrieve the output of a job that has not yet been submitted.

exception gc3libs.exceptions.InvalidResourceName(msg, do_log=True)
Raised to signal that no computational resource with the given name is defined in the configuration file.

Raising this exception will automatically log its message at ERROR level, unless the do_log=False optional
argument is explicitly passed to the constructor.

exception gc3libs.exceptions.InvalidType(msg, do_log=False)
A specialization of‘InvalidArgument‘ for cases when the type of the passed argument does not match expecta-
tions.

exception gc3libs.exceptions.InvalidUsage(msg, do_log=True)
Raised when a command is not provided all required arguments on the command line, or the arguments do not
match the expected syntax.

Since the exception message is the last thing a user will see, try to be specific about what is wrong on the
command line.

exception gc3libs.exceptions.InvalidValue(msg, do_log=False)
A specialization of‘InvalidArgument‘ for cases when the value of the passed argument does not match expecta-
tions.

exception gc3libs.exceptions.LRMSError(msg, do_log=False)

exception gc3libs.exceptions.LRMSSkipSubmissionToNextIteration(msg,
do_log=False)

Older and deprecated alias for ResourceNotReady

Only actually kept for backwards-compatibility.

exception gc3libs.exceptions.LRMSSubmitError(msg, do_log=False)

exception gc3libs.exceptions.LoadError(msg, do_log=False)
Raised upon errors loading a job from the persistent storage.

exception gc3libs.exceptions.MaximumCapacityReached(msg, do_log=False)
Indicates that a resource is full and cannot run any more jobs.

exception gc3libs.exceptions.NoAccessibleConfigurationFile(msg, do_log=True)
Raised when the configuration file cannot be read (e.g., does not exist or has wrong permissions).

exception gc3libs.exceptions.NoConfigurationFile(msg, do_log=True)
Raised when the configuration file cannot be read (e.g., does not exist or has wrong permissions), or cannot be
parsed (e.g., is malformed).

exception gc3libs.exceptions.NoResources(msg, do_log=False)
Raised to signal that no resources are defined, or that none are compatible with the request.

exception gc3libs.exceptions.NoValidConfigurationFile(msg, do_log=True)
Raised when the configuration file cannot be parsed (e.g., is malformed).

exception gc3libs.exceptions.OutputNotAvailableError(msg, do_log=False)
Raised upon attempts to retrieve the output for jobs that are still in NEW or SUBMITTED state.

exception gc3libs.exceptions.RecoverableAuthError(msg, do_log=False)

2.2. Programmer Documentation 133

gc3pie Documentation, Release 2.6.8

exception gc3libs.exceptions.RecoverableDataStagingError(msg, do_log=False)
Raised when transient problems with copying data to or from the remote execution site occurred.

This error is considered to be transient (e.g., network connectivity interruption), so trying again at a later time
could solve the problem.

exception gc3libs.exceptions.RecoverableError(msg, do_log=False)
Used to mark transient errors: retrying the same action at a later time could succeed.

This exception should never be instanciated: it is only to be used in except clauses to catch “try again” situations.

exception gc3libs.exceptions.RecoverableTransportError(msg, do_log=False)

exception gc3libs.exceptions.ResourceNotReady(msg, do_log=False)
A resource is not yet ready to accept tasks.

For instance: a new virtual machine has been started to run for a task, but it is still booting. Although we cannot
submit the task right now, it will be accepted in the (not too distant) future.

exception gc3libs.exceptions.SpoolDirError(msg, do_log=False)
Raised when a backend fails to access the spooldir either because it does not exists or cannot be read.

exception gc3libs.exceptions.TaskError(msg, do_log=False)
Generic error condition in a Task object.

exception gc3libs.exceptions.TransportError(msg, do_log=False)

exception gc3libs.exceptions.UnexpectedJobState(msg, do_log=False)
Raised when a job state is gotten from the execution code, that does not match what GC3Pie expects for the
task.

Typically this is a synchronization issue (different parts of a system update at different times), hence this error
is marked as “recoverable”.

For instance, a task might be TERMINATED according to GC3Pie but the batch system accounting commands
still report it as running.

exception gc3libs.exceptions.UnexpectedStateError(msg, do_log=False)
Raised by Task.progress() when a job lands in STOPPED or TERMINATED state.

exception gc3libs.exceptions.UnknownJob(msg, do_log=False)
Raised when an operation is attempted on a task, which is unknown to the remote server or backend.

exception gc3libs.exceptions.UnknownJobState(msg, do_log=False)
Raised when a job state is gotten from the Grid middleware, that is not handled by the GC3Libs code. Might
actually mean that there is a version mismatch between GC3Libs and the Grid middleware used.

exception gc3libs.exceptions.UnrecoverableAuthError(msg, do_log=False)

exception gc3libs.exceptions.UnrecoverableDataStagingError(msg, do_log=False)
Raised when problems with copying data to or from the remote execution site occurred.

exception gc3libs.exceptions.UnrecoverableError(msg, do_log=False)
Used to mark permanent errors: there’s no point in retrying the same action at a later time, because it will yield
the same error again.

This exception should never be instanciated: it is only to be used in except clauses to exclude “try again”
situations.

exception gc3libs.exceptions.UnrecoverableTransportError(msg, do_log=False)

134 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

gc3libs.optimizer

Support for finding minima of functions with GC3Pie.

GC3Pie can run a large number of Application instances in parallel. The idea of this optimization module is to
use these core capabilities to perform optimization, which is particularly effective for optimization using evolutionary
algorithms, as they require several independent evaluations of the target function.

The optimization module has two main components, the driver and the algorithm. You need both an instance of a
driver and an instance of an algorithm to perform optimization of a given function.

Drivers perform optimization following a specific algorithm. Two drivers are currently implemented: drivers.
SequentialDriver that runs the entire algorithm on the local computer (hence, all the evaluations of the target
function required by the algorithm are performed one after the other), and drivers.ParallelDriver splits the
evaluations into tasks that are executed in parallel using GC3Pie’s remote execution facilities.

This module implements a generic framework for evolutionary algorithms, and one particular type of global opti-
mization algorithm called Differential Evolution is worked out in full. Other Evolutionary Algorithms can easily be
incorporated by subclassing EvolutionaryAlgorithm. (Different optimization algorithms, for example gradi-
ent based methods such as quasi-newton methods, could be implemented but likely require adaptations in the driver
classes.)

The module is organized as follows:

• drivers: Set of drivers that interface with GC3Libs to automatically drive the optimization process following
a specified algorithm. ParallelDriver is the core of the optimization module, performing optimization
using an algorithm based on EvolutionaryAlgorithm.

• dif_evolution: Implements the Differential Evolution algorithm, in particular the evolution and selection
step, based on EvolutionaryAlgorithm. See the module for details on the algorithm.

• extra: Provides tools to printing, plotting etc. that can be used as addons to EvolutionaryAlgorithm.

class gc3libs.optimizer.EvolutionaryAlgorithm(initial_pop, itermax=100,
dx_conv_crit=None,
y_conv_crit=None, logger=None, af-
ter_update_opt_state=[])

Base class for building an evolutionary algorithm for global optimization.

Parameters

• initial_pop – Initial population for the optimization. The value can be any sequence
that can be passed to np.array()

• itermax (int) – Maximum # of iterations.

• dx_conv_crit (float) – Abort optimization if all population members are within a
certain distance to each other.

• y_conv_crit (float) – Declare convergence when the target function is below a
y_conv_crit.

• logger (obj) – Configured logger to use.

• after_update_opt_state – List of functions that are called at the end of
update_opt_state(). Use this list to provide problem-specific printing and plotting
routines. Examples can be found in gc3libs.optimizer.extra.

evolve()
Generates a new population fullfilling in_domain(). :rtype list of population members

has_converged()
Checks convergence based on two criteria:

2.2. Programmer Documentation 135

http://stackoverflow.com/a/7519536

gc3pie Documentation, Release 2.6.8

1) Is the lowest target value in the population below y_conv_crit.

2) Are all population members within dx_conv_crit from the first population member.

Return type bool

select(new_pop, new_vals)
Update self.pop and self.vals given the new population and the corresponding fitness vector.

update_opt_state(new_pop, new_vals)
Stores set of function values corresponding to the current population, then updates optimizer state in many
ways:

• update the .best* variables accordingly;

• uses select() to determine the surviving population.

• advances iteration count.

gc3libs.optimizer.draw_population(lower_bds, upper_bds, dim, size, in_domain=None,
seed=None)

Draw a random population with the following criteria:

Parameters

• lower_bds – List of length dim indicating the lower bound in each dimension.

• upper_bds – List of length dim indicating the upper bound in each dimension.

• dim (int) – Dimension of each population member.

• size (int) – Population size.

• in_domain (fun) – Determines population’s validity. Takes no arguments and returns a
list of bools indicating each members validity.

• seed (float) – Seed to initialize NumPy’s random number generator.

Return type list of population members

gc3libs.optimizer.populate(create_fn, in_domain=None, max_n_resample=100)
Generate a new population.

Uses create_fn() to generate a new population. If in_domain() is not fulfilled, create_fn() is
called repeatedly. Invalid population members are replaced until reaching the desired valid population size or
max_n_resample calls to create_fn(). If max_n_resample is reached, a warning is issued and the optimiza-
tion continues with the remaining “invalid” members.

Parameters

• create_fn (fun) – Generates a new population. Takes no arguments.

• in_domain (fun) – Determines population’s validity. Takes no arguments and returns a
list of bools indicating each members validity.

• max_n_resample (int) – Maximum number of resamples to be drawn to satisfy
in_domain()

Return type list of population members

136 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

gc3libs.optimizer.dif_evolution

This module implements a global optimization algorithm called Differential Evolution.

Consider the following optimization problem: 𝑚𝑖𝑛 𝑓(x) 𝑠.𝑡. x
𝑖𝑛𝐷, where 𝐷
𝑖𝑛R𝑑 and 𝑓 : 𝐷 ↦→ R. Class DifferentialEvolutionAlgorithm solves this optimization problem using the
differential evolution algorithm. No further assumptions on the function 𝑓 are needed. Thus it can be non-convex,
noisy etc.

The domain 𝐷 is implicitly specified by passing the function filtern_fn() to
DifferentialEvolutionAlgorithm.

Some information related to Differential Evolution can be found in the following papers:

1) Tvrdik 2008: http://www.proceedings2008.imcsit.org/pliks/95.pdf

2) Fleetwood: http://www.maths.uq.edu.au/MASCOS/Multi-Agent04/Fleetwood.pdf

3) Piyasatian: http://www-personal.une.edu.au/~jvanderw/DE_1.pdf

evolve_fn() is an adaptation of the following MATLAB code: http://www.icsi.berkeley.edu/~storn/DeMat.zip
hosted on http://www.icsi.berkeley.edu/~storn/code.html#deb1.

class gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm(initial_pop,
de_strategy=’DE_rand’,
de_step_size=0.85,
prob_crossover=1.0,
exp_cross=False,
iter-
max=100,
dx_conv_crit=None,
y_conv_crit=None,
in_domain=None,
seed=None,
log-
ger=None,
af-
ter_update_opt_state=[])

Differential Evolution Algorithm class. DifferentialEvolutionAlgorithm explicitly allows for
an another process to control the optimization. Driver classes can be found in gc3libs.optimizer.
drivers.py.

Parameters

• initial_pop – Initial population for the optimization. Value can be any sequence that
can be passed to the np.array() constructor.

• de_strategy (str) – e.g. DE_rand_either_or_algorithm. Allowed are:

• de_step_size (float) – Differential Evolution step size.

• prob_crossover (float) – Probability new population draws will replace old mem-
bers.

• exp_cross (bool) – Set True to use exponential crossover.

• itermax (int) – Maximum # of iterations.

• dx_conv_crit (float) – Abort optimization if all population members are within a
certain distance to each other.

2.2. Programmer Documentation 137

http://www.proceedings2008.imcsit.org/pliks/95.pdf
http://www.maths.uq.edu.au/MASCOS/Multi-Agent04/Fleetwood.pdf
http://www-personal.une.edu.au/~jvanderw/DE_1.pdf
http://www.icsi.berkeley.edu/~storn/DeMat.zip
http://www.icsi.berkeley.edu/~storn/code.html#deb1

gc3pie Documentation, Release 2.6.8

• y_conv_crit (float) – Declare convergence when the target function is below a
y_conv_crit.

• in_domain (fun) – Optional function that implements nonlinear constraints.

• seed (float) – Seed to initialize NumPy’s random number generator.

• logger (obj) – Configured logger to use.

• after_update_opt_state – List of Functions that are called at the end of
DifferentialEvolutionAlgorithm.after_update_opt_state(). Use
this list to provide problem-specific printing and plotting routines. Examples can be found
in gc3libs.optimizer.extra.

The de_strategy value must be chosen from the dif_evolution.strategies enumeration. Allowed values are (de-
scription of the strategies taken from http://www.icsi.berkeley.edu/~storn/DeMat.zip):

1. 'DE_rand': The classical version of DE.

2. 'DE_local_to_best': A version which has been used by quite a number of scientists. Attempts
a balance between robustness # and fast convergence.

3. 'DE_best_with_jitter': Taylored for small population sizes and fast convergence. Dimen-
sionality should not be too high.

4. 'DE_rand_with_per_vector_dither': Classical DE with dither to become even more robust.

5. 'DE_rand_with_per_generation_dither': Classical DE with dither to become even more robust.
Choosing de_step_size = 0.3 is a good start here.

6. 'DE_rand_either_or_algorithm': Alternates between differential mutation and three-point- re-
combination.

evolve()
Generates a new population fullfilling in_domain.

Return type list of population members

static evolve_fn(population, prob_crossover, de_step_size, dim, best_iter, de_strategy,
exp_cross)

Return new population, evolved according to de_strategy.

Parameters

• population – Population generating offspring from.

• prob_crossover – Probability new population draws will replace old members.

• de_step_size – Differential Evolution step size.

• dim – Dimension of each population member.

• best_iter – Best population member of the current population.

• de_strategy – Differential Evolution strategy. See
DifferentialEvolutionAlgorithm.

• bool (exp_cross) – Set True to use exponential crossover.

select(new_pop, new_vals)
Perform a one-on-one battle by index, keeping the member with lowest corresponding value.

138 Chapter 2. Table of Contents

http://www.icsi.berkeley.edu/~storn/DeMat.zip

gc3pie Documentation, Release 2.6.8

gc3libs.optimizer.drivers

Drivers to perform global optimization.

Global optimizations can be performed sequentially on a local machine using SequentialDriver. To make use
of parallelization, ParallelDriver allows submission of jobs to gc3pie ressources.

Drivers use an algorithm instance that conforms to optimizer.EvolutionaryAlgorithm to generate new
populations.

class gc3libs.optimizer.drivers.ComputeTargetVals(pop, jobname, iteration,
path_to_stage_dir, cur_pop_file,
task_constructor, **extra_args)

gc3libs.workflow.ParallelTaskCollection to evaluate the current pop using the user-
supplied task_constructor().

Parameters

• pop – Population to evaluate. Must be a NumPy “array-like” value.

• jobname (str) – Name of GridDriver instance driving the optimization.

• iteration (int) – Current iteration number.

• path_to_stage_dir (str) – Path to directory in which optimization takes place.

• cur_pop_file (str) – Filename under which the population is stored in the current
iteration dir. The population is discarded if no file is specified.

• task_constructor – Takes a list of x vectors and the path to the current iteration di-
rectory. Returns Application instances that can be executed on the grid.

class gc3libs.optimizer.drivers.ParallelDriver(jobname=”, path_to_stage_dir=”,
opt_algorithm=None,
task_constructor=None, ex-
tract_value_fn=<function Paral-
lelDriver.<lambda>>, cur_pop_file=”,
**extra_args)

Drives an optimization using opt_algorithm on the grid.

At each iteration an instance of ComputeTargetVals uses task_constructor() to generate
gc3libs.Application instances to be executed in parallel. When all jobs are complete, the output is
analyzed with the user-supplied function extract_value_fn(). This function returns the function value
for all analyzed input vectors.

Parameters

• jobname (str) – string that labels this optimization case.

• path_to_stage_dir – directory in which to perform the optimization.

• opt_algorithm – Evolutionary algorithm instance that conforms to optimizer.
EvolutionaryAlgorithm.

• task_constructor – A function that takes a list of x vectors and the path to the current
iteration directory, and returns Application instances that can be executed on the grid.

• extract_value_fn – Takes an Application instance returns the function value
computed in that task. The default implementation just looks for a .value attribute on the
application instance.

2.2. Programmer Documentation 139

gc3pie Documentation, Release 2.6.8

• cur_pop_file – Filename under which the population is stored in the current iteration
dir. The population is discarded if no file is specified.

Optimization drivers use GC3Pie in the following way: A SequentialTaskCollection represents the
main loop of the optimization algorithm, checking for convergence at each iteration. This allows for re-
suming paused or crashed optimizations. Each iteration, the optimization algorithm provides a new set
of points to be evaluated. These points are each represented by an Application and bundled into a
ParallelTaskCollection that manages each single Application until completion. The structure
of GC3Libs objects employed can be summarized as follows:

SequentialTaskCollection
|
v

ParallelTaskCollection
|
v

Application

next(done)
Return collection state or task to run after step number done is terminated.

This method is called when a task is finished; the done argument contains the index number of the
just-finished task into the self.tasks list. In other words, the task that just completed is available as
self.tasks[done].

The return value from next can be either a task state (i.e., an instance of Run.State), or a valid index number
for self.tasks. In the first case:

• if the return value is Run.State.TERMINATED, then no other jobs will be run;

• otherwise, the return value is assigned to execution.state and the next job in the self.tasks list is exe-
cuted.

If instead the return value is a (nonnegative) number, then tasks in the sequence will be re-run starting from
that index.

The default implementation runs tasks in the order they were given to the constructor, and sets the state
to TERMINATED when all tasks have been run. This method can (and should) be overridden in derived
classes to implement policies for serial job execution.

class gc3libs.optimizer.drivers.SequentialDriver(opt_algorithm, target_fn,
path_to_stage_dir=’/home/docs/checkouts/readthedocs.org/user_builds/gc3pie/checkouts/v2.6.x/docs’,
cur_pop_file=None, logger=None,
fmt=None)

Drives an optimization using opt_algorithm on the local machine.

The user-supplied target_fun() computes target values for the populations generated by opt_algorithm.

Parameters

• opt_algorithm – Evolutionary algorithm instance that conforms to optimizer.
EvolutionaryAlgorithm.

• target_fn – Function to evaluate a population and return the corresponding values.

• path_to_stage_dir – Directory in which to perform the optimization.

• cur_pop_file – Filename under which the population is stored in the current iteration
dir. The population is discarded if no file is specified.

• logger – Configured logger to use.

140 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

• fmt (str) – %-format string to use (e.g., %12.8f) to print values at each step of the algo-
rithm. If None (default), this verbose report is not generated, as it might be time-consuming
for large population sizes.

de_opt()
Drives optimization until convergence or itermax is reached.

gc3libs.optimizer.extra

Collection of tools to supplement optimization algorithm optimizer.EvolutionaryAlgorithm.

Include a list of desired tools in param after_update_opt_state of optimizer.EvolutionaryAlgorithm.

gc3libs.optimizer.extra.log_stats(algo, logger=<RootLogger root (WARNING)>)
Log summary statistics for algo.

Parameters algo (str) – Instance of gc3libs.optimizer.EvolutionaryAlgorithm.

class gc3libs.optimizer.extra.plot_population(figure_dir)
Plot the 2-dimensional population of an gc3libs.optimizer.EvolutionaryAlgorithm instance. If
the population is not 2-d an error message appears and no plot is created.

Parameters figure_dir (str) – Path to the directory where plots should be stored. Directory
will be created if non-existent.

gc3libs.optimizer.extra.print_stats(algo, output=<_io.TextIOWrapper name=’<stdout>’
mode=’w’ encoding=’UTF-8’>)

Print summary statistics for algo.

Parameters

• algo (str) – Instance of gc3libs.optimizer.EvolutionaryAlgorithm.

• output – Output stream.

gc3libs.persistence

Facade to store and retrieve Job information from permanent storage.

A usage warning

This module saves Python objects using the pickle framework: thus, the Application subclass corresponding to a job
must be already loaded (or at least import-able) in the Python interpreter for pickle to be able to ‘undump’ the object
from its on-disk representation.

In other words, if you create a custom Application subclass in some client code, GC3Utils won’t be able to read job
files created by this code, because the class definition is not available in GC3Utils.

The recommended simple workaround is for a stand-alone script to ‘import self’ and then use the fully qualified name
to run the script. In other words, start your script with this boilerplate code:

if __name__ == '__main__':
import myscriptname
myscriptname.MyScript().run()

The rest of the script now runs as the myscript module, which does the trick!

2.2. Programmer Documentation 141

gc3pie Documentation, Release 2.6.8

Note: Of course, the myscript.py file must be in the search path of the Python interpreter, or GC3Utils will still
complain!

gc3libs.persistence.make_store(uri, *args, **extra_args)
Factory producing concrete Store instances.

Given a URL and (optionally) initialization arguments, return a fully-constructed Store instance.

The only required argument is uri; if any other arguments are present in the function invocation, they are passed
verbatim to the constructor associated with the scheme of the given uri.

Example:

>>> fs1 = make_store('file:///tmp')
>>> fs1.__class__.__name__
'FilesystemStore'

Argument uri can also consist of a path name, in which case a URL scheme ‘file:///’ is assumed:

>>> fs2 = make_store('/tmp')
>>> fs2.__class__.__name__
'FilesystemStore'

class gc3libs.persistence.Persistable(*args, **kwargs)
A mix-in class to mark that an object should be persisted by its ID.

Any instance of this class is saved as an ‘external reference’ when a container holding a reference to it is saved.

class gc3libs.persistence.IdFactory(prefix=None, next_id_fn=None, id_class=<class
’gc3libs.persistence.idfactory.Id’>)

Automatically generate a “unique identifier” (of class Id). Object identifiers are temporally unique: no identifier
will (ever) be re-used, even in different invocations of the program.

new(obj)
Return a new “unique identifier” instance (a string).

reserve(n)
Pre-allocate n IDs. Successive invocations of the Id constructor will return one of the pre-allocated, with a
potential speed gain if many Id objects are constructed in a loop.

class gc3libs.persistence.JobIdFactory(next_id_fn=None)
Override IdFactory behavior and generate IDs starting with a lowercase job prefix.

class gc3libs.persistence.FilesystemStore(directory=’/home/docs/.gc3/jobs’, idfac-
tory=<gc3libs.persistence.idfactory.IdFactory
object>, protocol=4, **extra_args)

Save and load objects in a given directory. Uses Python’s standard pickle module to serialize objects onto files.

All objects are saved as files in the given directory (default: gc3libs.defaults.JOBS_DIR). The file name is the
object ID.

If an object contains references to other Persistable objects, these are saved in the file they would have been
saved if the save method was called on them in the first place, and only an ‘external reference’ is saved in the
pickled container. This ensures that: (1) only one copy of a shared object is ever saved, and (2) any shared
reference to Persistable objects is correctly restored when restoring the container.

The default idfactory assigns object IDs by appending a sequential number to the class name; see class Id for
details.

142 Chapter 2. Table of Contents

file:///

gc3pie Documentation, Release 2.6.8

The protocol argument specifies the serialization protocol to use, if different from
gc3libs.persistence.serialization.DEFAULT_PROTOCOL.

Any extra keyword arguments are ignored for compatibility with SqlStore.

invalidate_cache()
Clear the loaded objects cache (if any).

Subsequent load() calls are guaranteed to re-load the data directly from the backing store.

list()
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError exception.

load(id_)
Load a saved object given its ID, and return it.

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.accessors

Accessors for object attributes and container items.

gc3libs.persistence.accessors.GET = <gc3libs.persistence.accessors.GetValue object>
Constant identity getter.

Use this for better readability (e.g., GET[0] instead of GetValue()[0]).

class gc3libs.persistence.accessors.GetAttributeValue(attr, xform=<function GetAt-
tributeValue.<lambda>>, de-
fault=<object object>)

Return an accessor function for the given attribute.

An instance of GetAttributeValue is a callable that, given any object, returns the value of its attribute attr, whose
name is specified in the GetAttributeValue constructor:

>>> from gc3libs import Struct
>>> fn = GetAttributeValue('x')
>>> a = Struct(x=1, y=2)
>>> fn(a)
1

The accessor raises AttributeError if no such attribute exists):

>>> b = Struct(z=3)
>>> fn(b)
Traceback (most recent call last):

...
AttributeError: 'Struct' object has no attribute 'x'

However, you can specify a default value, in which case the default value is returned and no error is raised:

2.2. Programmer Documentation 143

gc3pie Documentation, Release 2.6.8

>>> fn = GetAttributeValue('x', default=42)
>>> fn(b)
42
>>> fn = GetAttributeValue('y', default=None)
>>> print(fn(b))
None

In other words, if fn = GetAttributeValue(‘x’), then fn(obj) evaluates to obj.x.

If the string attr contains any dots, then attribute lookups are chained: if fn = GetAttributeValue(‘x.y’) then
fn(obj) evaluates to obj.x.y:

>>> fn = GetAttributeValue('x.y')
>>> a = Struct(x=Struct(y=42))
>>> fn(a)
42

The optional second argument xform allows composing the accessor with an arbitrary function that is passed an
object and should return a (possibly different) object whose attributes should be looked up. In other words, if
xform is specified, then the returned accessor function computes xform(obj).attr instead of obj.attr.

This allows combining GetAttributeValue with GetItemValue() (which see), to access objects in deeply-
nested data structures; see GetItemValue for examples.

class gc3libs.persistence.accessors.GetItemValue(place, xform=<function GetItem-
Value.<lambda>>, default=<object
object>)

Return accessor function for the given item in a sequence.

An instance of GetItemValue is a callable that, given any sequence/container object, returns the value of the item
at its place idx:

>>> fn = GetItemValue(1)
>>> a = 'abc'
>>> fn(a) == 'b'
True
>>> b = { 1:'x', 2:'y' }
>>> fn(b) == 'x'
True

In other words, if fn = GetItemValue(x), then fn(obj) evaluates to obj[x].

Note that the returned function fn raises IndexError or KeyError, (depending on the type of sequence/container)
if place idx does not exist:

>>> fn = GetItemValue(42)
>>> a = list('abc')
>>> fn(a)
Traceback (most recent call last):

...
IndexError: list index out of range
>>> b = dict(x=1, y=2, z=3)
>>> fn(b)
Traceback (most recent call last):

...
KeyError: 42

However, you can specify a default value, in which case the default value is returned and no error is raised:

144 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

>>> fn = GetItemValue(42, default='foo')
>>> fn(a) == 'foo'
True
>>> fn(b) == 'foo'
True

The optional second argument xform allows composing the accessor with an arbitrary function that is passed
an object and should return a (possibly different) object where the item lookup should be performed. In other
words, if xform is specified, then the returned accessor function computes xform(obj)[idx] instead of obj[idx].
For example:

>>> c = 'abc'
>>> fn = GetItemValue(1, xform=(lambda s: s.upper()))
>>> fn(c) == 'B'
True

>>> c = (('a',1), ('b',2))
>>> fn = GetItemValue('a', xform=dict)
>>> fn(c)
1

This allows combining GetItemValue with GetAttrValue (which see), to access objects in deeply-nested
data structures.

class gc3libs.persistence.accessors.GetOnly(only, xform=<function
GetOnly.<lambda>>, default=<object
object>)

Apply accessor function to members of a certain class; return a default value otherwise.

The GetOnly accessor performs just like GetValue, but is effective only on instances of a certain class; if the
accessor function is passed an instance of a different class, the default value is returned:

>>> from gc3libs import Struct
>>> fn4 = GetOnly(Struct, default=42)
>>> isinstance(fn4(Struct(foo='bar')), Struct)
True
>>> isinstance(fn4(dict(foo='bar')), dict)
False
>>> fn4(dict(foo='bar'))
42

If default is not specified, then None is returned:

>>> fn5 = GetOnly(Struct)
>>> repr(fn5(dict(foo='bar')))
'None'

class gc3libs.persistence.accessors.GetValue(default=<object object>)
Provide easier compositional syntax for GetAttributeValue and GetItemValue.

Instances of GetAttributeValue and GetItemValue can be composed by passing one as xform parameter to the
other; however, this results in the writing order being the opposite of the composition order: for instance, to
create an accessor to evaluate x.a[0] for any Python object x, one has to write:

>>> from gc3libs import Struct
>>> fn1 = GetItemValue(0, GetAttributeValue('a'))

The GetValue class allows to write accessor expressions the way they are normally written in Python:

2.2. Programmer Documentation 145

gc3pie Documentation, Release 2.6.8

>>> GET = GetValue()
>>> fn2 = GET.a[0]
>>> x = Struct(a=[21,42], b='foo')
>>> fn1(x)
21
>>> fn2(x)
21

The optional default argument specifies a value that should be used in case the required attribute or item is not
found:

>>> fn3 = GetValue(default='no value found').a[3]
>>> fn3(x) == 'no value found'
True

ONLY(specifier)
Restrict the action of the accessor expression to members of a certain class; return default value otherwise.

The invocation to only() should always be last:

>>> from gc3libs import Struct
>>> fn = GetValue(default='foo').a[0].ONLY(Struct)
>>> fn(Struct(a=['bar','baz'])) == 'bar'
True
>>> fn(dict(a=['bar','baz'])) == 'foo'
True

If it’s not last, you will get AttributeError like the following:

>>> fn = GetValue().ONLY(Struct).a[0]
>>> fn(dict(a=[0,1]))
Traceback (most recent call last):
...

AttributeError: 'NoneType' object has no attribute 'a'

gc3libs.persistence.filesystem

class gc3libs.persistence.filesystem.FilesystemStore(directory=’/home/docs/.gc3/jobs’,
idfac-
tory=<gc3libs.persistence.idfactory.IdFactory
object>, protocol=4, **ex-
tra_args)

Save and load objects in a given directory. Uses Python’s standard pickle module to serialize objects onto files.

All objects are saved as files in the given directory (default: gc3libs.defaults.JOBS_DIR). The file name is the
object ID.

If an object contains references to other Persistable objects, these are saved in the file they would have been
saved if the save method was called on them in the first place, and only an ‘external reference’ is saved in the
pickled container. This ensures that: (1) only one copy of a shared object is ever saved, and (2) any shared
reference to Persistable objects is correctly restored when restoring the container.

The default idfactory assigns object IDs by appending a sequential number to the class name; see class Id for
details.

The protocol argument specifies the serialization protocol to use, if different from
gc3libs.persistence.serialization.DEFAULT_PROTOCOL.

146 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Any extra keyword arguments are ignored for compatibility with SqlStore.

invalidate_cache()
Clear the loaded objects cache (if any).

Subsequent load() calls are guaranteed to re-load the data directly from the backing store.

list()
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError exception.

load(id_)
Load a saved object given its ID, and return it.

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.filesystem.make_filesystemstore(url, *args, **extra_args)
Return a FilesystemStore instance, given a ‘file:///’ URL and optional initialization arguments.

This function is a bridge between the generic factory functions provided by gc3libs.persistence.
make_store() and gc3libs.persistence.register() and the class constructor Filesystem-
Store:class.

Examples:

>>> fs1 = make_filesystemstore(Url('file:///tmp'))
>>> fs1.__class__.__name__
'FilesystemStore'

gc3libs.persistence.idfactory

class gc3libs.persistence.idfactory.Id
An automatically-generated “unique identifier” (a string-like object). The unique object identifier has the form
“PREFIX.NNN” where “NNN” is a decimal number, and “PREFIX” defaults to the object class name but can
be overridden in the Id constructor.

Two object IDs can be compared iff they have the same prefix; in which case, the result of the comparison is the
same as comparing the two sequence numbers.

class gc3libs.persistence.idfactory.IdFactory(prefix=None, next_id_fn=None,
id_class=<class
’gc3libs.persistence.idfactory.Id’>)

Automatically generate a “unique identifier” (of class Id). Object identifiers are temporally unique: no identifier
will (ever) be re-used, even in different invocations of the program.

new(obj)
Return a new “unique identifier” instance (a string).

reserve(n)
Pre-allocate n IDs. Successive invocations of the Id constructor will return one of the pre-allocated, with a
potential speed gain if many Id objects are constructed in a loop.

2.2. Programmer Documentation 147

file:///

gc3pie Documentation, Release 2.6.8

class gc3libs.persistence.idfactory.JobIdFactory(next_id_fn=None)
Override IdFactory behavior and generate IDs starting with a lowercase job prefix.

gc3libs.persistence.serialization

Generic object serialization (using Python’s pickle/cPickle modules).

See the documentation for Python’s standard *pickle* and *cPickle* modules for more details.

class gc3libs.persistence.serialization.Persistable(*args, **kwargs)
A mix-in class to mark that an object should be persisted by its ID.

Any instance of this class is saved as an ‘external reference’ when a container holding a reference to it is saved.

gc3libs.persistence.sql

SQL-based storage of GC3pie objects.

class gc3libs.persistence.sql.IntId

class gc3libs.persistence.sql.SqlStore(url, table_name=None, idfactory=None, ex-
tra_fields=None, create=True, **extra_args)

Save and load objects in a SQL db, using python’s pickle module to serialize objects into a specific field.

Access to the DB is done via SQLAlchemy module, therefore any driver supported by SQLAlchemy will be
supported by this class.

The url argument is used to access the store. It is supposed to be a gc3libs.url.Url class, and therefore
may contain username, password, host and port if they are needed by the db used.

The table_name argument is the name of the table to create. By default it’s store. Alternatively, the table
name can be given in the “fragment” part of the database URL, as #table=... (replace ... with the actual
table name). The constructor argument takes precedence over the table name specified in the DB URL.

The constructor will create the table_name table if it does not exist, but if there already is such a table it will
assume that its schema is compatible with our needs. A minimal table schema is as follows:

+-----------+--------------+------+-----+---------+
| Field | Type | Null | Key | Default |
+-----------+--------------+------+-----+---------+
id	int(11)	NO	PRI	NULL
data	blob	YES		NULL
state	varchar(128)	YES		NULL
+-----------+--------------+------+-----+---------+

The meaning of the fields is:

• id: this is the id returned by the save() method and uniquely identifies a stored object.

• data: serialized Python object.

• state: if the object is a Task instance, this will be its current execution state.

The extra_fields constructor argument is used to extend the database. It must contain a mapping *column*:
function where:

• column is a sqlalchemy.Column object.

• function is a function which takes the object to be saved as argument and returns the value to be stored
into the database. Any exception raised by this function will be ignored. Classes GetAttribute and
GetItem in module get provide convenient helpers to save object attributes into table columns.

148 Chapter 2. Table of Contents

http://docs.python.org/library/pickle.html

gc3pie Documentation, Release 2.6.8

For each extra column the save() method will call the corresponding function in order to get the correct value to
store into the DB.

Any extra keyword arguments are ignored for compatibility with FilesystemStore.

invalidate_cache()
Clear the loaded objects cache (if any).

Subsequent load() calls are guaranteed to re-load the data directly from the backing store.

list()
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError exception.

load(id_)
Load a saved object given its ID, and return it.

pre_fork()
Dispose current SQLAlchemy engine (if any). A new SQLAlchemy engine will be initialized upon the
next interaction with a DB.

This method only exists to allow SessionBasedDaemon and similar applications that can do DB op-
erations after fork()ing to continue to operate, without incurring into a SQLAlchemy “OperationalError:
(. . .) could not receive data from server: Transport endpoint is not connected”

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

t_store
Deprecated compatibility alias for SqlStore._tables

gc3libs.persistence.sql.make_sqlstore(url, *args, **extra_args)
Return a SqlStore instance, given a SQLAlchemy URL and optional initialization arguments.

This function is a bridge between the generic factory functions provided by gc3libs.persistence.
make_store() and gc3libs.persistence.register() and the class constructor SqlStore:class.

Examples:

| >>> ss1 = make_sqlstore(gc3libs.url.Url('sqlite:////tmp/foo.db'))
| >>> ss1.__class__.__name__
| 'SqlStore'

gc3libs.persistence.store

class gc3libs.persistence.store.Store(url=None)
Interface for storing and retrieving objects on permanent storage.

Each save operation returns a unique “ID”; each ID is a Python string value, which is guaranteed to be temporally
unique, i.e., no two save operations in the same persistent store can result in the same IDs being assigned to
different objects. The “ID” is also stored in the instance attribute _id.

Any Python object can stored, provided it meets the following conditions:

• it can be pickled with Python’s standard module pickle.

2.2. Programmer Documentation 149

gc3pie Documentation, Release 2.6.8

• the instance attribute persistent_id is reserved for use by the Store class: it should not be set or altered by
other parts of the code.

invalidate_cache()
Clear the loaded objects cache (if any).

Subsequent load() calls are guaranteed to re-load the data directly from the backing store.

list(**extra_args)
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError exception.

load(id_)
Load a saved object given its ID, and return it.

post_fork()
Restore functionality that was suspended in pre_fork()

This method will be called after forking/daemonizing has been successfully accomplished.

The default implementation of this method does nothing.

pre_fork()
Make preparations for fork()-ing the current process.

This should close open network connections or any other sockets or file descriptors that cannot be used by
both the parent and child process.

The default implementation of this method does nothing; as of 2018-04-10, the only subclass making use
of this functionality is SqlStore, which needs to dispose the SQLAlchemy engine and re-create it after
forking.

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.store.make_store(uri, *args, **extra_args)
Factory producing concrete Store instances.

Given a URL and (optionally) initialization arguments, return a fully-constructed Store instance.

The only required argument is uri; if any other arguments are present in the function invocation, they are passed
verbatim to the constructor associated with the scheme of the given uri.

Example:

>>> fs1 = make_store('file:///tmp')
>>> fs1.__class__.__name__
'FilesystemStore'

Argument uri can also consist of a path name, in which case a URL scheme ‘file:///’ is assumed:

>>> fs2 = make_store('/tmp')
>>> fs2.__class__.__name__
'FilesystemStore'

gc3libs.persistence.store.register(scheme, constructor)
Register constructor as the factory corresponding to an URL scheme.

150 Chapter 2. Table of Contents

file:///

gc3pie Documentation, Release 2.6.8

If a different constructor is already registered for the same scheme, it is silently overwritten.

The registry mapping schemes to constructors is used in the make_store() to create concrete instances of
gc3libs.persistence.Store, given a URI that identifies the kind and location of the storage.

Parameters

• scheme (str) – URL scheme to associate with the given constructor.

• constructor (callable) – A callable returning a Store instance. Typically, a class
constructor.

gc3libs.poller

This module implements “pollers”. A “Poller” is an object that monitors a given URL and returns events whenever a
new object is created inside that URL.

class gc3libs.poller.FilePoller(url, recurse=False, **kw)
Track events on the filesystem using Python’s standard os module.

Params recurse When True, automatically track events in any (already-existing or newly-created)
subdirectory.

Warning: In order to issue ‘modified’ events, this class relies on checking an inode’s st_mtime field,
which only provides 1-second resolution. Modification events that happen too close will not be told apart as
distinct; in particular, modifying a file less than 1s after creating it will not be detected.

This implementation is only used to track Url with file schema whenever the inotify_simple module is not
available.

get_new_events()
Iterate over events that happened since last call to this method.

Returns a list of tuples (subject, event).

A subject is a unique identifier for a watched “thing”: the exact form and type depends on the actual
concrete class; pollers that watch the filesystem or HTTP-accessible resources will use a URL (gc3libs.
url.Url) as a subject instance, but e.g. pollers that watch a database table might use a row ID instead.

The associated event is one or more of the following strings:

• created: the subject has been created since the last call to get_new_events();

• modified: the subject has changed since the last call to get_new_events();

• deleted: the subject has been deleted since the last call to get_new_events();

Depending on the concrete poller class, some events might never occur, or cannot be detected. Most
notably, only filesystem-watching pollers might be able to generate meaningful modified events.

recurse
Whether the poller is watching the entire directory tree pointed to by self.url, or only the directory at
its top level.

class gc3libs.poller.INotifyPoller(url, recurse=False, **kw)
Use Linux’ inofity to track new events on the specified filesystem location.

Params recurse When True, automatically track events in any (already-existing or newly-created)
subdirectory.

2.2. Programmer Documentation 151

gc3pie Documentation, Release 2.6.8

This poller is used by default when the inotify_simple Python package is available and the URL has a file schema.

Warning: On Linux, the maximum number of inotify descriptors that a user can open is limited by the
kernel parameters:

• fs.inotify.max_user_instances

• fs.inotify.max_user_watches

• fs.inotify.max_queued_events

See also the inotify(7) manpage

get_new_events()
Iterate over events that happened since last call to this method.

Returns a list of tuples (subject, event).

A subject is a unique identifier for a watched “thing”: the exact form and type depends on the actual
concrete class; pollers that watch the filesystem or HTTP-accessible resources will use a URL (gc3libs.
url.Url) as a subject instance, but e.g. pollers that watch a database table might use a row ID instead.

The associated event is one or more of the following strings:

• created: the subject has been created since the last call to get_new_events();

• modified: the subject has changed since the last call to get_new_events();

• deleted: the subject has been deleted since the last call to get_new_events();

Depending on the concrete poller class, some events might never occur, or cannot be detected. Most
notably, only filesystem-watching pollers might be able to generate meaningful modified events.

recurse
Whether the poller is watching the entire directory tree pointed to by self.url, or only the directory at
its top level.

class gc3libs.poller.Poller(url, **kw)
Abstract class for an URL Poller.

A Poller is a class that tracks new events on a specific Url. When calling the get_events() it will return
a list of tuples (Url, mask) containing the events occurred for each one of the underlying URLs.

get_new_events()
Iterate over events that happened since last call to this method.

Returns a list of tuples (subject, event).

A subject is a unique identifier for a watched “thing”: the exact form and type depends on the actual
concrete class; pollers that watch the filesystem or HTTP-accessible resources will use a URL (gc3libs.
url.Url) as a subject instance, but e.g. pollers that watch a database table might use a row ID instead.

The associated event is one or more of the following strings:

• created: the subject has been created since the last call to get_new_events();

• modified: the subject has changed since the last call to get_new_events();

• deleted: the subject has been deleted since the last call to get_new_events();

Depending on the concrete poller class, some events might never occur, or cannot be detected. Most
notably, only filesystem-watching pollers might be able to generate meaningful modified events.

152 Chapter 2. Table of Contents

http://linux.die.net/man/7/inotify

gc3pie Documentation, Release 2.6.8

class gc3libs.poller.SwiftPoller(url, **kw)
Periodically check a SWIFT bucket and trigger events when new objects are created.

Right now, a valid URL can be one of the following form:

• If the keystone endpoint is reachable via HTTP, either one of:

– swift://<user>+<tenant>:<password>@<keystone-url>?container

– swt://<user>+<tenant>:<password>@<keystone-url>?container

• If the keystone endpoint is reachable via HTTPS, either one of:

– swifts://<user>+<tenant>:<password>@<keystone-url>?container

– swts://<user>+<tenant>:<password>@<keystone-url>?container

We assume that keystone auth version 2 is used.

get_new_events()
Iterate over events that happened since last call to this method.

Returns a list of tuples (subject, event).

A subject is a unique identifier for a watched “thing”: the exact form and type depends on the actual
concrete class; pollers that watch the filesystem or HTTP-accessible resources will use a URL (gc3libs.
url.Url) as a subject instance, but e.g. pollers that watch a database table might use a row ID instead.

The associated event is one or more of the following strings:

• created: the subject has been created since the last call to get_new_events();

• modified: the subject has changed since the last call to get_new_events();

• deleted: the subject has been deleted since the last call to get_new_events();

Depending on the concrete poller class, some events might never occur, or cannot be detected. Most
notably, only filesystem-watching pollers might be able to generate meaningful modified events.

gc3libs.poller.make_poller(url, **extra)
Factory method that returns the registered poller for the specified gc3libs.url.Url.

gc3libs.quantity

Manipulation of quantities with units attached with automated conversion among compatible units.

For details and the discussion leading up to this, see: <https://github.com/uzh/gc3pie/issues/47>

class gc3libs.quantity.Duration
Represent the duration of a time lapse.

Construction of a duration can be done by parsing a string specification; several formats are accepted:

• A duration is an aggregate of days, hours, minutes and seconds:

>>> l3 = Duration('1day 4hours 9minutes 16seconds')
>>> l3.amount(Duration.s) # convert to seconds
101356

• Any of the terms can be omitted (in which case it defaults to zero):

>>> l4 = Duration('1day 4hours 16seconds')
>>> l4 == l3 - Duration('9 minutes')
True

2.2. Programmer Documentation 153

gc3pie Documentation, Release 2.6.8

• The unit names can be singular or plural, and any amount of space can be added between the time unit
name and the associated amount:

>>> l5 = Duration('3 hour 42 minute')
>>> l6 = Duration('3 hours 42 minutes')
>>> l7 = Duration('3hours 42minutes')
>>> l5 == l6 == l7
True

• Unit names can also be abbreviated using just the leading letter:

>>> l8 = Duration('3h 42m')
>>> l9 = Duration('3h42m')
>>> l8 == l9
True

• The abbreviated formats HH:MM:SS and DD:HH:MM:SS are also accepted:

>>> # 1 hour + 1 minute + 1 second
>>> l1 = Duration('01:01:01')
>>> l1 == Duration('3661 s')
True

>>> # 1 day, 2 hours, 3 minutes, 4 seconds
>>> l2 = Duration('01:02:03:04')
>>> l2.amount(Duration.s)
93784

However, the formats HH:MM and MM:SS are rejected as ambiguous:

>>> # is this hours:minutes or minutes:seconds ?
>>> l0 = Duration('01:02')
Traceback (most recent call last):
...

ValueError: Duration '01:02' is ambiguous: use '1m 2s' ...

• Finally, you can specify a duration like any other quantity, as an integral amount of a given time unit:

>>> l1 = Duration('1 day')
>>> l2 = Duration('86400 s')
>>> l1 == l2
True

A new quantity can also be defined as a multiple of an existing one:

>>> an_hour = Duration('1 hour')
>>> a_day = 24 * an_hour
>>> a_day.amount(Duration.h)
24

The quantities Duration.hours, Duration.minutes and Duration.seconds (and their single-
letter abbreviations h, m, s) are pre-defined with their obvious meaning.

Also module-level aliases hours, minutes and seconds (and the one-letter forms) are available:

>>> a_day1 = 24*hours
>>> a_day2 = 1440*minutes
>>> a_day3 = 86400*seconds

154 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

This allows for yet another way of constructing duration objects, i.e., by passing the amount and the unit sepa-
rately to the constructor:

>>> a_day4 = Duration(24, hours)

Two durations are equal if they indicate the exact same amount in seconds:

>>> a_day1 == a_day2
True
>>> a_day1.amount(s)
86400
>>> a_day2.amount(s)
86400

>>> a_day == an_hour
False
>>> a_day.amount(minutes)
1440
>>> an_hour.amount(minutes)
60

Basic arithmetic is possible with durations:

>>> two_hours = an_hour + an_hour
>>> two_hours == 2*an_hour
True
>>> an_hour == two_hours / 2
True

>>> one_hour = two_hours - an_hour
>>> one_hour.amount(seconds)
3600

It is also possible to add duration quantities defined with different units; the result is naturally expressed in the
smaller unit of the two:

>>> one_hour_and_half = an_hour + 30*minutes
>>> one_hour_and_half
Duration(90, unit=m)

Note that the two unit class and numeric amount are accessible through the unit and amount() attributes:

>>> one_hour_and_half.unit
Duration(1, unit=m)
>>> one_hour_and_half.amount()
90

The amount() method accepts an optional specification of an alternate unit to express the amount into:

>>> one_hour_and_half.amount(Duration.hours)
1

An optional conv argument is available to specify a numerical domain for conversion, in case the default integer
arithmetic is not precise enough:

>>> one_hour_and_half.amount(Duration.hours, conv=float)
1.5

2.2. Programmer Documentation 155

gc3pie Documentation, Release 2.6.8

The to_str() method allows representing a duration as a string, and provides choice of the output format
and unit. The format string should contain exactly two %-specifiers: the first one is used to format the numerical
amount, and the second one to format the measurement unit name.

By default, the unit used originally for defining the quantity is used:

>>> '1 [hour]' == an_hour.to_str('%d [%s]')
True

This can be overridden by specifying an optional second argument unit:

>>> '60 [m]' == an_hour.to_str('%d [%s]', unit=Duration.m)
True

A third optional argument conv can set the numerical type to be used for conversion computations:

>>> '60.0 [m]' == an_hour.to_str('%.1f [%s]', unit=Duration.m, conv=float)
True

The default numerical type is int, which in particular implies that you get a null amount if the requested unit is
larger than the quantity:

>>> '0 [days]' == an_hour.to_str('%d [%s]', unit=Duration.days)
True

Conversion to string uses the unit originally used for defining the quantity and the %g%s format:

>>> str(an_hour)
'1hour'

to_timedelta()
Convert a duration into a Python datetime.timedelta object.

This is useful to operate on Python’s datetime.time and datetime.date objects, which can be added or
subtracted to datetime.timedelta.

class gc3libs.quantity.Memory
Represent an amount of RAM.

Construction of a memory quantity can be done by parsing a string specification (amount followed by unit):

>>> byte = Memory('1 B')
>>> kilobyte = Memory('1 kB')

A new quantity can also be defined as a multiple of an existing one:

>>> a_thousand_kB = 1000*kilobyte

The base-10 units (up to TB, Terabytes) and base-2 (up to TiB, TiBiBytes) are available as attributes of the
Memory class. This allows for a third way of constructing quantity objects, i.e., by passing the amount and the
unit separately to the constructor:

>>> a_megabyte = Memory(1, Memory.MB)
>>> a_mibibyte = Memory(1, Memory.MiB)

>>> a_gigabyte = 1*Memory.GB
>>> a_gibibyte = 1*Memory.GiB

(continues on next page)

156 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

>>> two_terabytes = 2*Memory.TB
>>> two_tibibytes = 2*Memory.TiB

Two memory quantities are equal if they indicate the exact same amount in bytes:

>>> kilobyte == 1000*byte
True
>>> a_megabyte == a_mibibyte
False
>>> a_megabyte < a_mibibyte
True
>>> a_megabyte > a_gigabyte
False

Basic arithmetic is possible with memory quantities:

>>> two_bytes = byte + byte
>>> two_bytes == 2*byte
True
>>> half_gigabyte = a_gigabyte / 2
>>> a_gigabyte == half_gigabyte * 2
True
>>> a_megabyte == a_gigabyte / 1000
True

The ratio of two memory quantities is correctly computed as a pure (floating-point) number:

>>> a_gigabyte / a_megabyte
1000.0

It is also possible to add memory quantities defined with different units; the result is naturally expressed in the
smaller unit of the two:

>>> one_gigabyte_and_half = 1*Memory.GB + 500*Memory.MB
>>> one_gigabyte_and_half
Memory(1500, unit=MB)

Note that the two unit class and numeric amount are accessible through the unit and amount() attributes:

>>> one_gigabyte_and_half.unit
Memory(1, unit=MB)
>>> one_gigabyte_and_half.amount()
1500

The amount() method accepts an optional specification of an alternate unit to express the amount into:

>>> one_gigabyte_and_half.amount(Memory.GB)
1

An optional conv argument is available to specify a numerical domain for conversion, in case the default integer
arithmetic is not precise enough:

>>> one_gigabyte_and_half.amount(Memory.GB, conv=float)
1.5

The to_str() method allows representing a quantity as a string, and provides choice of the output format and
unit. The format string should contain exactly two %-specifiers: the first one is used to format the numerical

2.2. Programmer Documentation 157

gc3pie Documentation, Release 2.6.8

amount, and the second one to format the measurement unit name.

By default, the unit used originally for defining the quantity is used:

>>> '1 [MB]' == a_megabyte.to_str('%d [%s]')
True

This can be overridden by specifying an optional second argument unit:

>>> '1000 [kB]' == a_megabyte.to_str('%d [%s]', unit=Memory.kB)
True

A third optional argument conv can set the numerical type to be used for conversion computations:

>>> '0.001GB' == a_megabyte.to_str('%g%s', unit=Memory.GB, conv=float)
True

The default numerical type is int, which in particular implies that you get a null amount if the requested unit is
larger than the quantity:

>>> '0GB' == a_megabyte.to_str('%g%s', unit=Memory.GB, conv=int)
True

Conversion to string uses the unit originally used for defining the quantity and the %g%s format:

>>> str(a_megabyte)
'1MB'

class gc3libs.quantity.Quantity(base_unit_name, **other_units)
Metaclass for creating quantity classes.

This factory creates subclasses of _Quantity and bootstraps the base unit.

The name of the base unit is given as argument to the metaclass instance:

>>> @add_metaclass(Quantity('B'))
... class Memory1(object):
... pass
...
>>> B = Memory1('1 B')
>>> print (2*B)
2B

Optional keyword arguments create additional units; the argument key gives the unit name, and its value gives
the ratio of the new unit to the base unit. For example:

>>> @add_metaclass(Quantity('B', kB=1000, MB=1000*1000))
... class Memory2(object):
... pass
...
>>> a_thousand_kB = Memory2('1000kB')
>>> MB = Memory2('1 MB')
>>> a_thousand_kB == MB
True

Note that the units (base and additional) are also available as class attributes for easier referencing in Python
code:

158 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

>>> a_thousand_kB == Memory2.MB
True

gc3libs.session

session - persistent collections of tasks

class gc3libs.session.Session(path, create=True, store_or_url=None, load=True,
task_ids=None, **extra_args)

A ‘session’ is a persistent collection of tasks.

Tasks added to the session are persistently recorded using an instance of gc3libs.persistence.Store. Stores can
be shared among different sessions: each session knows wich jobs it ‘owns’.

A session is associated to a directory, which holds all the data releated to that session. Specifically, two files are
always created in the session directory andused internally by this class:

• index.txt: contains a list of all job IDs associated with this session;

• store.url: its contents are the URL of the store to create (as would be passed to the
gc3libs.persistence.make_store factory).

To only argument needed to instantiate a session is the path of the directory; the directory name will be used as
the identifier of the session itself. For example, the following code creates a temporary directory and the two
files mentioned above inside it:

>>> import tempfile; tmpdir = tempfile.mktemp(dir='.')
>>> session = Session(tmpdir)
>>> for name in sorted(os.listdir(tmpdir)):
... print(name)
created
session_ids.txt
store.url

When a Session object is created with a path argument pointing to an existing valid session, the index of jobs is
automatically loaded into memory, and the store pointed to by the store.url file in the session directory will
be used, disregarding the contents of the ‘store_url‘ argument.

In other words, the store_url argument is only used when creating a new session. If no store_url argument
is passed (i.e., it has its default value), a Session object will instantiate and use a FileSystemStore store,
keeping data in the jobs subdirectory of the session directory.

Methods add and remove are provided to manage the collection; the len() operator returns the number of tasks
in the session; iteration over a session returns the tasks one by one:

>>> task1 = gc3libs.Task()
>>> id1 = session.add(task1)
>>> task2 = gc3libs.Task()
>>> id2 = session.add(task2)
>>> len(session)
2
>>> for t in session:
... print(type(t))
<class 'gc3libs.Task'>
<class 'gc3libs.Task'>
>>> session.remove(id1)
>>> len(session)
1

2.2. Programmer Documentation 159

gc3pie Documentation, Release 2.6.8

When passed the flush=False optional argument, methods add and remove do not update the session metadata:
i.e., the tasks are added or removed from the store and the in-memory task list, but the updated task list is not
saved back to disk. This is useful when making many changes in a row; call Session.flush to persist the full set
of changes.

The Store object is anyway accessible in the store attribute of each Session instance:

>>> type(session.store)
<class 'gc3libs.persistence.filesystem.FilesystemStore'>

However, Session defines methods save and load as a convenient proxy to the corresponding Store methods:

>>> obj = gc3libs.persistence.Persistable()
>>> oid = session.save(obj)
>>> obj2 = session.load(oid)
>>> obj.persistent_id == obj2.persistent_id
True

The whole session data can be removed by using method destroy:

>>> session.destroy()
>>> os.path.exists(session.path)
False

add(task, flush=True)
Add a Task to the current session, save it to the associated persistent storage, and return the assigned
persistent_id:

>>> # create new, empty session
>>> import tempfile; tmpdir = tempfile.mktemp(dir='.')
>>> session = Session(tmpdir)
>>> len(session)
0

>>> # add a task to it
>>> task = gc3libs.Task()
>>> tid1 = session.add(task)
>>> len(session)
1

Duplicates are silently ignored: the same object can be added many times to the session, but gets the same
ID each time:

>>> # add a different task
>>> tid2 = session.add(task)
>>> len(session)
1
>>> tid1 == tid2
True

>>> # do cleanup
>>> session.destroy()
>>> os.path.exists(session.path)
False

destroy()
Remove the session directory and all the tasks it contains from the store which are associated to this
session.

160 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Note: This will remove the associated task storage if and only if the storage is contained in the session
directory!

flush()
Update session metadata.

Should be used after a save/remove operations, to ensure that the session state and metadata is correctly
persisted.

forget(task_id, flush=True)
Remove task identified by task_id from the current session but not from the associated storage.

iter_workflow()
Iterate over all tasks in this session.

Recursively descends TaskCollection in a breadth-first manner.

list_ids()
Return set of all task IDs belonging to this session.

list_names()
Return set of names of tasks belonging to this session.

load(obj_id, add=True, flush=True)
Load an object from persistent storage and return it.

This is just a convenience proxy for calling method load on the Store instance associated with this session.

load_many(obj_ids, add=True, flush=True)
Load objects given their IDs from persistent storage.

Return a dictionary mapping task ID to the actual retrieved Task object.

remove(task_id, flush=True)
Remove task identified by task_id from the current session and from the associated storage.

save(obj)
Save an object to the persistent storage and return persistent_id of the saved object.

This is just a convenience proxy for calling method save on the Store instance associated with this session.

The object is not added to the session, nor is session meta-data updated:

create an empty session
>>> import tempfile; tmpdir = tempfile.mktemp(dir='.')
>>> session = Session(tmpdir)
>>> 0 == len(session)
True

use `save` on an object
>>> obj = gc3libs.persistence.Persistable()
>>> oid = session.save(obj)

session is still empty
>>> 0 == len(session)
True

do cleanup
>>> session.destroy()
>>> os.path.exists(session.path)
False

2.2. Programmer Documentation 161

gc3pie Documentation, Release 2.6.8

save_all(flush=True)
Save all modified tasks to persistent storage.

set_end_timestamp(time=None)
Create a file named finished in the session directory. It’s creation/modification time will be used to know
when the session has finished.

Please note that Session does not know when a session is finished, so this method should be called by a
SessionBasedScript class.

set_start_timestamp(time=None)
Create a file named created in the session directory. It’s creation/modification time will be used to know
when the session has sarted.

class gc3libs.session.TemporarySession(store_or_url, task_ids=None, delete=True, **ex-
tra_args)

Create a session from a store URL.

In contrast with the regular Session object, a TemporarySession does not persist any metadata about the
task collection. In particular:

• The session index (list of task IDs belonging to the session) is initialized from the entire list of jobs present
in the given Store (unless a list is explicitly passed in the task_ids argument to the constructor). This
means that, unlike plain Session objects, two TemporarySession objects cannot share the same
store.

• The session directory (path in the Session constructor) is created on a temporary location on the
filesystem and deleted when the TemporarySession is destroyed.

• Timestamps will be set to the time the TemporarySession Python object is created; two
TemporarySession instances with the same backing store can have different creation timestamps,
depending on when exactly they were instanciated.

The TemporarySession is only provided as a convenience to use code that was built on top of a Session
with a “naked” Store.

gc3libs.template

Support and expansion of programmatic templates.

The module gc3libs.template allows creation of textual templates with a simple object-oriented programming inter-
face: given a string with a list of substitutions (using the syntax of Python’s standard substitute module), a set of
replacements can be specified, and the gc3libs.template.expansions function will generate all possible texts coming
from the same template. Templates can be nested, and expansions generated recursviely.

class gc3libs.template.Template(template, validator=<function Template.<lambda>>, **ex-
tra_args)

A template object is a pair (obj, keywords). Methods are provided to substitute the keyword values into obj,
and to iterate over expansions of the given keywords (optionally filtering the allowed combination of keyword
values).

Second optional argument validator must be a function that accepts a set of keyword arguments, and returns
True if the keyword combination is valid (can be expanded/substituted back into the template) or False if it
should be discarded. The default validator passes any combination of keywords/values.

expansions(**keywords)
Iterate over all valid expansions of the templated object and the template keywords. Returned items are
Template instances constucted with the expanded template object and a valid combination of keyword
values.

162 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

substitute(**extra_args)
Return result of interpolating the value of keywords into the template. Keyword arguments extra_args can
be used to override keyword values passed to the constructor.

If the templated object provides a substitute method, then return the result of invoking it with the tem-
plate keywords as keyword arguments. Otherwise, return the result of applying Python standard library’s
string.Template.safe_substitute() on the string representation of the templated object.

Raise ValueError if the set of keywords/values is not valid according to the validator specified in the
constructor.

gc3libs.template.expansions(obj, **extra_args)
Iterate over all expansions of a given object, recursively expanding all templates found. How the expansions are
actually computed, depends on the type of object being passed in the first argument obj:

• If obj is a list, iterate over expansions of items in obj. (In particular, this flattens out nested lists.)

Example:

>>> L = [0, [2, 3]]
>>> list(expansions(L))
[0, 2, 3]

• If obj is a dictionary, return dictionary formed by all combinations of a key k in obj with an expansion
of the corresponding value obj[k]. Expansions are computed by recursively calling expansions(obj[k],
**extra_args).

Example:

>>> D = {'a':1, 'b':[2,3]}
>>> E = list(expansions(D))
>>> len(E)
2
>>> {'a': 1, 'b': 2} in E
True
>>> {'a': 1, 'b': 3} in E
True

• If obj is a tuple, iterate over all tuples formed by the expansion of every item in obj. (Each item t[i] is
expanded by calling expansions(t[i], **extra_args).)

Example:

>>> T = (1, [2, 3])
>>> list(expansions(T))
[(1, 2), (1, 3)]

• If obj is a Template class instance, then the returned values are the result of applying the template to the
expansion of each of its keywords.

Example:

>>> T1 = Template("a=${n}", n=[0,1])
>>> E = list(expansions(T1))
>>> len(E)
2
>>> Template('a=${n}', n=0) in E
True
>>> Template('a=${n}', n=1) in E
True

2.2. Programmer Documentation 163

gc3pie Documentation, Release 2.6.8

Note that keywords passed to the expand invocation override the ones used in template construction:

>>> T2 = Template("a=${n}")
>>> E = list(expansions(T2, n=[1,3]))
>>> Template('a=${n}', n=1) in E
True
>>> Template('a=${n}', n=3) in E
True

• Any other value is returned unchanged.

Example:

>>> V = 42
>>> list(expansions(V))
[42]

gc3libs.testing

Sub-package of utility function to aid in writing GC3Pie unit tests.

gc3libs.testing.helpers

Utility functions for use in unit test code.

class gc3libs.testing.helpers.SimpleParallelTaskCollection(num_tasks, **ex-
tra_args)

class gc3libs.testing.helpers.SimpleSequentialTaskCollection(num_tasks, **ex-
tra_args)

class gc3libs.testing.helpers.SuccessfulApp(name=’success’, **extra_args)
An application instance reporting always a zero exit code.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with whatever
exit status, see returncode) and the final output has been retrieved.

The location where the final output has been stored is available in attribute self.output_dir.

The default implementation does nothing, override in derived classes to implement additional behavior.

class gc3libs.testing.helpers.UnsuccessfulApp(name=’fail’, **extra_args)
An application reporting always a non-zero exit code.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with whatever
exit status, see returncode) and the final output has been retrieved.

The location where the final output has been stored is available in attribute self.output_dir.

The default implementation does nothing, override in derived classes to implement additional behavior.

gc3libs.testing.helpers.example_cfg_dict()
Write a GC3Pie configuration into a Python dictionary.

gc3libs.testing.helpers.temporary_config(cfgtext=None)
Return a GC3Pie Configuration object.

Optional argument cfgtext holds the contents of the configuration file to use. If not given, a default one will be
used.

164 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

gc3libs.testing.helpers.temporary_config_file(cfgtext=None, keep=False)
Write a GC3Pie configuration into a temporary file.

Yields an open file object pointing to the configuration file. Its .name attribute holds the file path in the
filesystem.

gc3libs.testing.helpers.test_resource(name=’test’, **params)
Yield a GC3Pie configuration containing a single resource, built using the given parameters.

The only resource is named test (can be changed by passing keyword argument name).

Note: The parameters must be given in the internal format expected by the backend “LRMS” constructors, not
in the string format expected by the configuration file parser.

gc3libs.url

Utility classes and methods for dealing with URLs.

class gc3libs.url.Url
Represent a URL as a named-tuple object. This is an immutable object that cannot be changed after creation.

The following read-only attributes are defined on objects of class Url.

Attribute Index Value if not present
scheme 0 URL scheme specifier empty string
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
query 3 Query component empty string
hostname 4 Host name (lower case) None
port 5 Port number as integer (if present) None
username 6 User name None
password 7 Password None
fragment 8 URL fragment (part after #) empty string

There are two ways of constructing Url objects:

• By passing a string urlstring:

>>> u = Url('http://www.example.org/data')

>>> u.scheme == 'http'
True
>>> u.netloc == 'www.example.org'
True
>>> u.path == '/data'
True

The default URL scheme is file:

>>> u = Url('/tmp/foo')
>>> u.scheme == 'file'
True
>>> u.path == '/tmp/foo'
True

2.2. Programmer Documentation 165

gc3pie Documentation, Release 2.6.8

However, if a # character is present in the path name, it will be taken as separating the path from the
“fragment”:

>>> u = Url('/tmp/foo#1')
>>> u.path == '/tmp/foo'
True
>>> u.fragment == '1'
True

Please note that extra leading slashes ‘/’ are interpreted as the begining of a network location:

>>> u = Url('//foo/bar')
>>> u.path == '/bar'
True
>>> u.netloc == 'foo'
True
>>> Url('///foo/bar').path == '/foo/bar'
True

(Check RFC 3986 http://tools.ietf.org/html/rfc3986)

If force_abs is True (default), then the path attribute is made absolute, by calling os.path.abspath if neces-
sary:

>>> u = Url('foo/bar', force_abs=True)
>>> os.path.isabs(u.path)
True

Otherwise, if force_abs is False, then the path attribute stores the passed string unchanged:

>>> u = Url('foo', force_abs=False)
>>> os.path.isabs(u.path)
False
>>> u.path == 'foo'
True

Other keyword arguments can specify defaults for missing parts of the URL:

>>> u = Url('/tmp/foo', scheme='file', netloc='localhost')
>>> u.scheme == 'file'
True
>>> u.netloc == 'localhost'
True
>>> u.path == '/tmp/foo'
True

Query attributes are also supported:

>>> u = Url('http://www.example.org?foo=bar')
>>> u.query == 'foo=bar'
True

and so are fragments:

>>> u = Url('postgresql://user@db.example.org#table=data')
>>> u.fragment == 'table=data'
True

166 Chapter 2. Table of Contents

http://tools.ietf.org/html/rfc3986

gc3pie Documentation, Release 2.6.8

• By passing keyword arguments only, to construct an Url object with exactly those values for the named
fields:

>>> u = Url(scheme='http', netloc='www.example.org', path='/data')

In this form, the force_abs parameter is ignored.

See also: http://goo.gl/9WcRvR

adjoin(relpath)
Return a new Url, constructed by appending relpath to the path section of this URL.

Example:

>>> u0 = Url('http://www.example.org')
>>> u1 = u0.adjoin('data')
>>> str(u1)
'http://www.example.org/data'

>>> u2 = u1.adjoin('moredata')
>>> str(u2)
'http://www.example.org/data/moredata'

Even if relpath starts with /, it is still appended to the path in the base URL:

>>> u3 = u2.adjoin('/evenmore')
>>> str(u3)
'http://www.example.org/data/moredata/evenmore'

Optional query attribute is left untouched:

>>> u4 = Url('http://www.example.org?bar')
>>> u5 = u4.adjoin('foo')
>>> str(u5)
'http://www.example.org/foo?bar'

class gc3libs.url.UrlKeyDict(iter_or_dict=None, force_abs=False, **extra_kv)
A dictionary class enforcing that all keys are URLs.

Strings and/or objects returned by urlparse can be used as keys. Setting a string key automatically translates it
to a URL:

>>> d = UrlKeyDict()
>>> d['/tmp/foo'] = 1
>>> for k in d.keys(): print (type(k), k.path) # doctest:+ELLIPSIS
<class '....Url'> /tmp/foo

Retrieving the value associated with a key works with both the string or the url value of the key:

>>> d['/tmp/foo']
1
>>> d[Url('/tmp/foo')]
1

Key lookup can use both the string or the Url value as well:

>>> '/tmp/foo' in d
True
>>> Url('/tmp/foo') in d

(continues on next page)

2.2. Programmer Documentation 167

http://goo.gl/9WcRvR

gc3pie Documentation, Release 2.6.8

(continued from previous page)

True
>>> 'file:///tmp/foo' in d
True
>>> 'http://example.org' in d
False

Class UrlKeyDict supports initialization by copying items from another dict instance or from an iterable of (key,
value) pairs:

>>> d1 = UrlKeyDict({ '/tmp/foo':'foo', '/tmp/bar':'bar' })
>>> d2 = UrlKeyDict([('/tmp/foo', 'foo'), ('/tmp/bar', 'bar')])
>>> d1 == d2
True

An empty UrlKeyDict instance is returned by the constructor when called with no parameters:

>>> d0 = UrlKeyDict()
>>> len(d0)
0

If force_abs is True, then all paths are converted to absolute ones in the dictionary keys.

>>> d = UrlKeyDict(force_abs=True)
>>> d['foo'] = 1
>>> for k in d.keys(): print(os.path.isabs(k.path))
True

>>> d = UrlKeyDict(force_abs=False)
>>> d['foo'] = 2
>>> for k in d.keys(): print(os.path.isabs(k.path))
False

class gc3libs.url.UrlValueDict(iter_or_dict=None, force_abs=False, **extra_kv)
A dictionary class enforcing that all values are URLs.

Strings and/or objects returned by urlparse can be used as values. Setting a string value automatically translates
it to a URL:

>>> d = UrlValueDict()
>>> d[1] = '/tmp/foo'
>>> d[2] = Url('file:///tmp/bar')
>>> for v in d.values(): print (type(v), v.path) # doctest:+ELLIPSIS
<class '....Url'> /tmp/foo
<class '....Url'> /tmp/bar

Retrieving the value associated with a key always returns the URL-type value, regardless of how it was set:

>>> d[1] == Url(scheme='file', netloc='', path='/tmp/foo',
→˓hostname=None, port=None, query='', username=None, password=None,
→˓fragment='')
True

Class UrlValueDict supports initialization by any of the methods that work with a plain dict instance:

>>> d1 = UrlValueDict({ 'foo':'/tmp/foo', 'bar':'/tmp/bar' })
>>> d2 = UrlValueDict([('foo', '/tmp/foo'), ('bar', '/tmp/bar')])

(continues on next page)

168 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(continued from previous page)

>>> d3 = UrlValueDict(foo='/tmp/foo', bar='/tmp/bar')

>>> d1 == d2
True
>>> d2 == d3
True

In particular, an empty UrlDict instance is returned by the constructor when called with no parameters:

>>> d0 = UrlValueDict()
>>> len(d0)
0

If force_abs is True, then all paths are converted to absolute ones in the dictionary values.

>>> d = UrlValueDict(force_abs=True)
>>> d[1] = 'foo'
>>> for v in d.values(): print(os.path.isabs(v.path))
True

>>> d = UrlValueDict(force_abs=False)
>>> d[2] = 'foo'
>>> for v in d.values(): print(os.path.isabs(v.path))
False

gc3libs.utils

Generic Python programming utility functions.

This module collects general utility functions, not specifically related to GC3Libs. A good rule of thumb for determin-
ing if a function or class belongs in here is the following: place a function or class in this module if you could copy its
code into the sources of a different project and it would not stop working.

class gc3libs.utils.Enum
A generic enumeration class. Inspired by: http://goo.gl/1AL5N0 with some more syntactic sugar added.

An Enum class must be instanciated with a list of strings, that make the enumeration “label”:

>>> Animal = Enum('CAT', 'DOG')

Each label is available as an instance attribute, evaluating to itself:

>>> Animal.DOG
'DOG'

>>> Animal.CAT == 'CAT'
True

As a consequence, you can test for presence of an enumeration label by string value:

>>> 'DOG' in Animal
True

Finally, enumeration labels can also be iterated upon:

2.2. Programmer Documentation 169

http://goo.gl/1AL5N0

gc3pie Documentation, Release 2.6.8

>>> for a in sorted(Animal): print(a)
CAT
DOG

class gc3libs.utils.ExponentialBackoff(slot_duration=0.05, max_retries=5)
Generate waiting times with the exponential backoff algorithm.

Returned times are in seconds (or fractions thereof); they are integral multiples of the basic time slot, which is
set with the slot_duration constructor parameter.

After max_retries have been attempted, any call to this iterator will raise a StopIteration exception.

The ExponentialBackoff class implements the iterator protocol, so you can just retrieve waiting times with the
.next() method, or by looping over it:

>>> lapses = list(ExponentialBackoff(max_retries=7))
>>> len(lapses)
8

wait()
Wait for another while.

class gc3libs.utils.History
A list of messages with timestamps and (optional) tags.

The append method should be used to add a message to the History:

>>> L = History()
>>> L.append('first message')
>>> L.append('second one')

The last method returns the text of the last message appended, with its timestamp:

>>> L.last().startswith('second one at')
True

Iterating over a History instance returns message texts in the temporal order they were added to the list, with
their timestamp:

>>> for msg in L: print(msg)
first message ...

append(message, *tags)
Append a message to this History.

The message is timestamped with the time at the moment of the call.

The optional tags argument is a sequence of strings. Tags are recorded together with the message and may
be used to filter log messages given a set of labels. (This feature is not yet implemented.)

format_message(message)
Return a formatted message, appending to the message its timestamp in human readable format.

last()
Return text of last message appended. If log is empty, return empty string.

exception gc3libs.utils.NeverUsedException
this exception should never be raised

class gc3libs.utils.PlusInfinity
An object that is greater-than any other object.

170 Chapter 2. Table of Contents

http://goo.gl/PxVICA

gc3pie Documentation, Release 2.6.8

>>> x = PlusInfinity()

>>> x > 1
True
>>> 1 < x
True
>>> 1245632479102509834570124871023487235987634518745 < x
True

>>> x > sys.maxsize
True
>>> x < sys.maxsize
False
>>> sys.maxsize < x
True

PlusInfinity objects are actually larger than any given Python object:

>>> x > 'azz'
True
>>> x > object()
True

Relational operators try to return the correct value when comparing PlusInfinity to other instances of PlusInfinity:

>>> y = PlusInfinity()
>>> x < y
False
>>> x <= y
True
>>> x == y
True
>>> x >= y
True
>>> x > y
False

Finally, addition and subtraction of a finite number from PlusInfinity always results in PlusInfinity:

>>> y = x - 1
>>> x == y
True
>>> y = x + 1
>>> x == y
True

Note that this used to be a singleton with special handling of ‘is’. This was removed because it was apparently
unused, and a lot of extra code.

class gc3libs.utils.Struct(initializer=None, **extra_args)
A dict-like object, whose keys can be accessed with the usual ‘[. . .]’ lookup syntax, or with the ‘.’ get attribute
syntax.

Examples:

>>> a = Struct()
>>> a['x'] = 1

(continues on next page)

2.2. Programmer Documentation 171

gc3pie Documentation, Release 2.6.8

(continued from previous page)

>>> a.x
1
>>> a.y = 2
>>> a['y']
2

Values can also be initially set by specifying them as keyword arguments to the constructor:

>>> a = Struct(z=3)
>>> a['z']
3
>>> a.z
3

Like dict instances, Struct‘s have a ‘copy method to get a shallow copy of the instance:

>>> b = a.copy()
>>> b.z
3

copy()
Return a (shallow) copy of this Struct instance.

keys()→ a set-like object providing a view on D’s keys

gc3libs.utils.WindowsError
alias of gc3libs.utils.NeverUsedException

class gc3libs.utils.YieldAtNext(generator)
Provide an alternate protocol for generators.

Wrap a Python generator object, and buffer the return values from send and throw calls, returning None instead.
Return the yielded value –or raise the StopIteration exception– upon the subsequent call to the next method.

gc3libs.utils.backup(path)
Rename the filesystem entry at path by appending a unique numerical suffix; return new name.

For example,

1. create a test file:

>>> import tempfile
>>> path = tempfile.mkstemp()[1]

2. then make a backup of it; the backup will end in .~1~:

>>> path1 = backup(path)
>>> os.path.exists(path + '.~1~')
True

3. re-create the file, and make a second backup: this time the file will be renamed with a .~2~ extension:

>>> open(path, 'w').close()
>>> path2 = backup(path)
>>> os.path.exists(path + '.~2~')
True

cleaning up tests

172 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

>>> os.remove(path+'.~1~')
>>> os.remove(path+'.~2~')

gc3libs.utils.basename_sans(path)
Return base name without the extension.

This behaves exactly like os.path.basename() except that the last few characters, up to the rightmost dot,
are removed as well:

>>> basename_sans('/tmp/foo.txt') == 'foo'
True

>>> basename_sans('bar.txt') == 'bar'
True

If there is no dot in the file name, no “extension” is chopped off:

>>> basename_sans('baz') == 'baz'
True

If there are several dots in the file name, only the last one and trailing characters are removed:

>>> basename_sans('foo.bar.baz') == 'foo.bar'
True

Leading directory components are chopped off in any case:

>>> basename_sans('/tmp/foo.bar.baz') == 'foo.bar'
True

>>> basename_sans('/tmp/foo') == 'foo'
True

gc3libs.utils.cache_for(lapse)
Cache the result of a (nullary) method invocation for a given amount of time. Use as a decorator on object
methods whose results are to be cached.

Store the result of the first invocation of the decorated method; if another invocation happens before lapse
seconds have passed, return the cached value instead of calling the real function again. If a new call happens
after the grace period has expired, call the real function and store the result in the cache.

Note: Do not use with methods that take keyword arguments, as they will be discarded! In addition, arguments
are compared to elements in the cache by identity, so that invoking the same method with equal but distinct
object will result in two separate copies of the result being computed and stored in the cache.

Cache results and timestamps are stored into the objects’ _cache_value and _cache_last_updated attributes, so
the caches are destroyed with the object when it goes out of scope.

The working of the cached method can be demonstrated by the following simple code:

>>> class X(object):
... def __init__(self):
... self.times = 0
... @cache_for(2)
... def foo(self):
... self.times += 1
... return self.times
>>> x = X()

(continues on next page)

2.2. Programmer Documentation 173

gc3pie Documentation, Release 2.6.8

(continued from previous page)

>>> x.foo()
1
>>> x.foo()
1
>>> time.sleep(3)
>>> x.foo()
2

gc3libs.utils.cat(*args, **extra_args)
Concatenate the contents of all args into output. Both output and each of the args can be a file-like object or a
string (indicating the path of a file to open).

If append is True, then output is opened in append-only mode; otherwise it is overwritten.

gc3libs.utils.check_file_access(path, mode, exception=<class ’RuntimeError’>, isdir=False)
Test for access to a path; if access is not granted, raise an instance of exception with an appropriate error message.
This is a frontend to os.access(), which see for exact semantics and the meaning of path and mode.

Parameters

• path – Filesystem path to test.

• mode – See os.access()

• exception – Class of exception to raise if test fails.

• isdir – If True then also test that path points to a directory.

If the test succeeds, True is returned:

>>> check_file_access('/bin/sh', os.F_OK)
True
>>> check_file_access('/bin/sh', os.R_OK)
True
>>> check_file_access('/bin/sh', os.X_OK)
True
>>> check_file_access('/tmp', os.X_OK)
True

However, if the test fails, then an exception is raised:

>>> check_file_access('/proc/version', os.W_OK)
Traceback (most recent call last):
...

RuntimeError: Cannot write to file '/proc/version'.

If the optional argument isdir is True, then additionally test that path points to a directory inode:

>>> check_file_access('/tmp', os.F_OK, isdir=True)
True

>>> check_file_access('/bin/sh', os.F_OK, isdir=True)
Traceback (most recent call last):
...

RuntimeError: Expected '/bin/sh' to be a directory, but it's not.

gc3libs.utils.deploy_configuration_file(filename, template_filename=None)
Ensure that configuration file filename exists; possibly copying it from the specified template_filename.

174 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Return True if a file with the specified name exists in the configuration directory. If not, try to copy the template
file over and then return False; in case the copy operations fails, a NoConfigurationFile exception is raised.

The template_filename is always resolved relative to GC3Libs’ ‘package resource’ directory (i.e., the etc/
directory in the sources. If template_filename is None, then it is assumed to be the base name of filename.

gc3libs.utils.dirname(pathname)
Same as os.path.dirname but return . in case of path names with no directory component.

gc3libs.utils.fgrep(literal, filename)
Iterate over all lines in a file that contain the literal string.

gc3libs.utils.first(seq)
Return the first element of sequence or iterator seq. Raise TypeError if the argument does not implement either
of the two interfaces.

Examples:

>>> s = [0, 1, 2]
>>> first(s)
0

>>> s = {'a':1, 'b':2, 'c':3}
>>> first(sorted(s.keys())) == 'a'
True

gc3libs.utils.from_encoded_bytes(chars, encodings)
Convert chars to Python unicode string, trying different encodings.

Try converting byte string chars to a Python text string (type unicode on Py2, type str on Py3), trying each
of the encodings specified until one of them succeeds.

If none of the encodings work, raise UnicodeDecodeError.

Parameters

• chars (bytes) – Byte string to convert to text

• encodings (list) – List of encodings to try, in sequence. (e.g., ['utf-8',
'latin-1']

Raises UnicodeDecodeError – When none of the encodings can successfully convert the given
byte string.

gc3libs.utils.from_filesystem_bytes(chars)
Convert chars to Python unicode string, trying different encodings.

This function should be used to make a Python text string (type unicode on Python 2, type str on Python 3)
out of a byte string of characters that result from a filesystem lookup operation. Conversion to a text string is
attempted using the following encodings, in order:

1. the encoding determined by the current locale (as determined by Python’s locale.getlocale());

2. the “user’s preferred encoding”, as determined by Python’s locale.getpreferredencoding();

3. UTF-8 encoding;

4. direct map of byte values 0x0 through 0xff to the corresponding Unicode code points.

The latter conversion will not be a valid text conversion (i.e., it will not preserve any text representation of the
string), unless the ISO-8859-1 (aka “latin-1”) encoding is used.

However, the issue we need to solve here is the mismatch of Python’s use of text strings to represent path names
with UNIX’ C library use of byte strings to represent the same. Since the UNIX kernel has no notion of character

2.2. Programmer Documentation 175

gc3pie Documentation, Release 2.6.8

encoding in path names (as opposed to Windows, which uses UNICODE since Win95), there is actually no
guarantee that a given file name can be decoded. This is particularly evident on multi-user Linux/UNIX systems
where you may be using e.g. the en_US.UTF-8 locale but your Russian colleague may be using KOI8-R. . .

Parameters chars (bytes) – Byte string to convert to text

Raises UnicodeDecodeError – When none of the encodings can successfully convert the given
byte string.

gc3libs.utils.from_template(template, **extra_args)
Return the contents of template, substituting all occurrences of Python formatting directives ‘%(key)s’ with the
corresponding values taken from dictionary extra_args.

If template is an object providing a read() method, that is used to gather the template contents; else, if a file
named template exists, the template contents are read from it; otherwise, template is treated like a string provid-
ing the template contents itself.

gc3libs.utils.from_terminal_bytes(chars)
Convert chars to Python unicode string, using current locale encoding.

This function should be used to make a Python text string (type unicode on Python 2, type str on Python 3)
out of a byte string of characters that were inputed by users in a terminal application (e.g., returned by input()
or typed as command-line arguments).

If the current locale encoding cannot be determined, then the byte string is assumed to be an ASCII-only string.

Parameters chars (bytes) – Byte string to convert to text

Raises UnicodeDecodeError – When none of the encodings can successfully convert the given
byte string.

gc3libs.utils.get_available_physical_memory()
Return size of available memory (as a gc3libs.quantity.Memory object). The figure only refers to RAM, i.e.,
physical memory as opposed to virtual memory (swap).

Should work on any POSIX system that supports the _SC_AVPHYS_PAGES variable in the sysconf() C
library call.

Raises NotImplementedError – If syscalls to determine amount of available physical memory
are not implemented on this system.

gc3libs.utils.get_linux_memcg_limit()
Return memory limit in this process’ Linux memory cgroup. Return value is a gc3libs.quantity.Memory object,
or None if no limit can be detected.

As the Linux “memory cgroup” mechanism implements different limits, and not all of them might have been
set/enforced, we we read possible limits in supposedly ascending order (“soft” limits should be lower than
“hard” limits) and return first one that exists.

See also: https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt

gc3libs.utils.get_max_real_memory()
Return maximum size of available real memory. Return value is a gc3libs.quantity.Memory object, or None if
no limit can be detected.

Various sources are polled for a limit, and the minimum is returned:

• available physical memory, as reported by sysconf(3);

• current resource limits (also known as ulimit in shell programming) RLIMIT_DATA and RLIMIT_AS;

• current Linux memory cgroup limits.

176 Chapter 2. Table of Contents

https://www.kernel.org/doc/Documentation/cgroup-v1/memory.txt

gc3pie Documentation, Release 2.6.8

gc3libs.utils.get_num_processors()
Return number of online processor cores.

gc3libs.utils.get_scheduler_and_lock_factory(lib)
Return factories for creating a period task scheduler and locks.

The scheduler will be a scheduler class from the APScheduler framework (which see for the API), and the lock
factory is an appropriate locking object for synchronizing independently running tasks. Example:

sched_factory, lock_factory = _get_scheduler_and_lock_factory('threading')
sched = sched_factory()
sched.add_job(task1, 'interval', seconds=5)
sched.add_job(task2, 'interval', seconds=30)

shared_data_lock = lock_factory()

def task1():
...
with shared_data_lock:
modify shared data

Argument lib is one of: threading, gevent, tornado, asyncio (Python 3.5+ “async” system),
twisted, qt; each of them selects a scheduler and lock objects compatible with the named framework for
concurrent processing.

gc3libs.utils.getattr_nested(obj, name)
Like Python’s getattr, but perform a recursive lookup if name contains any dots.

gc3libs.utils.grep(pattern, filename)
Iterate over all lines in a file that match the pattern regular expression.

gc3libs.utils.ifelse(test, if_true, if_false)
Return if_true is argument test evaluates to True, return if_false otherwise.

This is just a workaround for Python 2.4 lack of the conditional assignment operator:

>>> a = 1
>>> b = ifelse(a, "yes", "no"); print(b)
yes
>>> b = ifelse(not a, 'yay', 'nope'); print(b)
nope

gc3libs.utils.irange(start, stop, step=1)
Iterate over all values greater or equal than start and less than stop. (Or the reverse, if step < 0.)

Example:

>>> list(irange(1, 5))
[1, 2, 3, 4]
>>> list(irange(0, 8, 3))
[0, 3, 6]
>>> list(irange(8, 0, -2))
[8, 6, 4, 2]

Unlike the built-in range function, irange also accepts floating-point values:

>>> list(irange(0.0, 1.0, 0.5))
[0.0, 0.5]

Also unlike the built-in range, both start and stop have to be specified:

2.2. Programmer Documentation 177

https://apscheduler.readthedocs.org/en/latest/userguide.html

gc3pie Documentation, Release 2.6.8

>>> try:
... irange(42)
... except TypeError:
... print("missing required argument!")
missing required argument!

Of course, a null step is not allowed:

>>> try:
... list(irange(1, 2, 0))
... except AssertionError as err:
... assert 'Null step in irange.' in str(err)

gc3libs.utils.lock(path, timeout, create=True)
Lock the file at path. Raise a LockTimeout error if the lock cannot be acquired within timeout seconds.

Return a lock object that should be passed unchanged to the gc3libs.utils.unlock function.

If no path points to a non-existent location, an empty file is created before attempting to lock (unless create is
False). An attempt is made to remove the file in case an error happens.

See also: gc3libs.utils.unlock()

gc3libs.utils.lookup(obj, name)
Return attribute or item with the given name in collection obj.

Raises LookupError – If obj has no attribute nor item with the given name.

This is meant for cases when different versions of an API may either return a dictionary (hence,
key/__getitem__-based lookup) or an object/namespace (hence, ./getattr-style lookup) and you want
to handle them in a uniform way.

The following examples demo it:

>>> D = {'a':1, 'b':2}
>>> lookup(D, 'a')
1
>>> lookup(D, 'c')
Traceback (most recent call last):
...

LookupError: Object ... has no attribute nor key named `c`

>>> class X(object):
... a = 1
... b = 2
>>> x = X()
>>> lookup(x, 'a')
1
>>> lookup(x, 'c')
Traceback (most recent call last):
...

LookupError: Object ... has no attribute nor key named `c`

gc3libs.utils.mkdir(path, mode=511)
Like os.makedirs, but does not throw an exception if PATH already exists.

gc3libs.utils.mkdir_with_backup(path, mode=511)
Like os.makedirs, but if path already exists and is not empty, rename the existing one to a backup name (see the
backup function).

178 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

Unlike os.makedirs, no exception is thrown if the directory already exists and is empty, but the target directory
permissions are not altered to reflect mode.

gc3libs.utils.move_recursively(src, dst, overwrite=False, changed_only=True)
Move src to dst, descending it recursively if necessary.

The overwrite and changed_only optional arguments have the same effect as in copytree() (which see).

gc3libs.utils.movefile(src, dst, overwrite=False, changed_only=True, link=False)
Move a file from src to dst; return True if the move was actually made.

The overwrite and changed_only optional arguments have the same effect as in copyfile() (which see).

If dst is a directory, a file with the same basename as src is created (or overwritten) in the directory specified.

Return True or False, depending on whether the source file was actually moved to the destination.

See also: copyfile()

gc3libs.utils.movetree(src, dst, overwrite=False, changed_only=True)
Recursively move an entire directory tree rooted at src.

The overwrite and changed_only optional arguments have the same effect as in copytree() (which see).

See also: copytree().

gc3libs.utils.occurs(pattern, filename, match=<function grep>)
Return True if a line in filename matches pattern.

The match argument selects how exactly pattern is searched for in the contents of filename:

• when match=grep (default), then pattern is a regular expression that is searched for (unanchored) in every
line;

• when match=fgrep, then pattern is a string that is searched for literally in every line;

• more in general, the match function should return an iterator over matches of pattern within the contents
of filename: if at least one match is found, occurs will return True.

Parameters

• pattern (str) – Pattern to search for

• filename (str) – Path name of the file to search into

• match – Function returning iterator over matches

gc3libs.utils.parse_linux_proc_limits(data=None)
Return dictionary mapping limit name to corresponding value. In case the actual limit is ‘unlimited’, value is
set to None.

gc3libs.utils.parse_range(spec)
Return minimum, maximum, and stepping value for a range.

Argument spec must be a string of the form LOW:HIGH:STEP, where LOW, HIGH and STEP are (integer or
floating-point) numbers. Example:

>>> parse_range('1:10:2')
(1, 10, 2)

>>> parse_range('1.0:3.5:0.5')
(1.0, 3.5, 0.5)

Note that, as soon as any one of LOW, HIGH, STEP is not an integer, all of them are parsed as Python floats:

2.2. Programmer Documentation 179

gc3pie Documentation, Release 2.6.8

>>> parse_range('1:3:0.5')
(1.0, 3.0, 0.5)

>>> parse_range('1.0:3:1')
(1.0, 3.0, 1.0)

>>> parse_range('1:3.0:1')
(1.0, 3.0, 1.0)

The final part :STEP can be omitted if the step is 1:

>>> parse_range('2:5')
(2, 5, 1)

>>> parse_range('1.0:3.0')
(1.0, 3.0, 1.0)

Finally, note that parse_range does not perform any kind of check on the validity of the resulting range; so it is
possible to parse a string into an empty range or range specification with stepping 0:

>>> parse_range('1:-5:10')
(1, -5, 10)

>>> parse_range('1:2:0')
(1, 2, 0)

As a special case to simplify user interfaces, a single number is accepted as a degenerate range: it will be parsed
as a range whose content is just the given number:

>>> parse_range('42')
(42, 43, 1)

gc3libs.utils.prettyprint(D, indent=0, width=0, maxdepth=None, step=4, only_keys=None,
output=<_io.TextIOWrapper name=’<stdout>’ mode=’w’
encoding=’UTF-8’>, _key_prefix=”, _exclude=None)

Print dictionary instance D in a YAML-like format. Each output line consists of:

• indent spaces,

• the key name,

• a colon character :,

• the associated value.

If the total line length exceeds width, the value is printed on the next line, indented by further step spaces; a
value of 0 for width disables this line wrapping.

Optional argument only_keys can be a callable that must return True when called with keys that should be
printed, or a list of key names to print.

Dictionary instances appearing as values are processed recursively (up to maxdepth nesting). Each nested in-
stance is printed indented step spaces from the enclosing dictionary.

gc3libs.utils.progressive_number(qty=None, id_filename=None)
Return a positive integer, whose value is guaranteed to be monotonically increasing across different invocations
of this function, and also across separate instances of the calling program.

This is accomplished by using a system-wide file which holds the “next available” ID. The location of this
file can be set using the GC3PIE_ID_FILE environment variable, or programmatically using the id_filename

180 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

argument. By default, the “next ID” file is located at ~/.gc3/next_id.txt:file:

Example:

>>> # create "next ID" file in a temporary location
>>> import tempfile, os
>>> (fd, tmp) = tempfile.mkstemp()

>>> n = progressive_number(id_filename=tmp)
>>> m = progressive_number(id_filename=tmp)
>>> m > n
True

If you specify a positive integer as argument, then a list of monotonically increasing numbers is returned. For
example:

>>> ls = progressive_number(5, id_filename=tmp)
>>> len(ls)
5

(clean up test environment)

>>> os.remove(tmp)

In other words, progressive_number(N) is equivalent to:

nums = [progressive_number() for n in range(N)]

only more efficient, because it has to obtain and release the lock only once.

After every invocation of this function, the last returned number is stored into the file passed as argument
id_filename. If the file does not exist, an attempt to create it is made before allocating an id; the method can
raise an IOError or OSError if id_filename cannot be opened for writing.

Note: as file-level locking is used to serialize access to the counter file, this function may block (default timeout:
30 seconds) while trying to acquire the lock, or raise a LockTimeout exception if this fails.

Raise LockTimeout, IOError, OSError

Returns A positive integer number, monotonically increasing with every call. A list of such numbers
if argument qty is a positive integer.

gc3libs.utils.read_contents(path)
Return the whole contents of the file at path as a single string.

Example:

>>> read_contents('/dev/null')
''

>>> import tempfile
>>> (fd, tmpfile) = tempfile.mkstemp()
>>> w = open(tmpfile, 'w')
>>> w.write('hey') and None # make doctest compatible with Py2 and Py3
>>> w.close()
>>> read_contents(tmpfile)
'hey'

(If you run this test, remember to do cleanup afterwards)

2.2. Programmer Documentation 181

gc3pie Documentation, Release 2.6.8

>>> os.remove(tmpfile)

gc3libs.utils.remove(path)
Remove a file, but raise no exception if it does not exist.

gc3libs.utils.safe_repr(obj)
Return a string describing Python object obj.

Avoids calling any Python magic methods, so should be safe to use as a ‘last resort’ in implementation of __str__
and __repr__.

gc3libs.utils.same_docstring_as(referenced_fn)
Function decorator: sets the docstring of the following function to the one of referenced_fn.

Intended usage is for setting docstrings on methods redefined in derived classes, so that they inherit the docstring
from the corresponding abstract method in the base class.

gc3libs.utils.samefile(path1, path2)
Like os.path.samefile but return False if either one of the paths does not exist.

gc3libs.utils.sh_quote_safe(arg)
Escape a string for safely passing as argument to a shell command.

Return a single-quoted string that expands to the exact literal contents of text when used as an argument to a
shell command. Examples (note that backslashes are doubled because of Python’s string read syntax):

>>> print(sh_quote_safe("arg"))
'arg'
>>> print(sh_quote_safe("'arg'"))
''\''arg'\'''

gc3libs.utils.sh_quote_safe_cmdline(args)
Single-quote a list of strings for passing to the shell as a command. Return string comprised of the quoted
arguments, concatenated and separated by spaces.

Examples:

>>> print(sh_quote_safe_cmdline(['sh', '-c', 'echo c(1,2,3)']))
'sh' '-c' 'echo c(1,2,3)'

gc3libs.utils.sh_quote_unsafe(arg)
Double-quote a string for passing as argument to a shell command.

Return a double-quoted string that expands to the contents of text but still allows variable expansion and \-
escapes processing by the UNIX shell. Examples (note that backslashes are doubled because of Python’s string
read syntax):

>>> print(sh_quote_unsafe("arg"))
"arg"
>>> print(sh_quote_unsafe('"arg"'))
"\"arg\""
>>> print(sh_quote_unsafe(r'"\"arg\""'))
"\"\\\"arg\\\"\""

gc3libs.utils.sh_quote_unsafe_cmdline(args)
Double-quote a list of strings for passing to the shell as a command. Return string comprised of the quoted
arguments, concatenated and separated by spaces.

Examples:

182 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

>>> print(sh_quote_unsafe_cmdline(['sh', '-c', 'echo $HOME']))
"sh" "-c" "echo $HOME"

gc3libs.utils.string_to_boolean(word)
Convert word to a Python boolean value and return it. The strings true, yes, on, 1 (with any capitalization and
any amount of leading and trailing spaces) are recognized as meaning Python True:

>>> string_to_boolean('yes')
True
>>> string_to_boolean('Yes')
True
>>> string_to_boolean('YES')
True
>>> string_to_boolean(' 1 ')
True
>>> string_to_boolean('True')
True
>>> string_to_boolean('on')
True

Any other word is considered as boolean False:

>>> string_to_boolean('no')
False
>>> string_to_boolean('No')
False
>>> string_to_boolean('Nay!')
False
>>> string_to_boolean('woo-hoo')
False

This includes also the empty string and whitespace-only:

>>> string_to_boolean('')
False
>>> string_to_boolean(' ')
False

gc3libs.utils.tempdir(**kwargs)
A context manager for creating and then deleting a temporary directory.

All arguments are passed unchanged to the tempfile.mkdtemp standand library function.

(Original source and credits: http://stackoverflow.com/a/10965572/459543)

gc3libs.utils.to_bytes(s)
Convert string s to an integer number of bytes. Suffixes like ‘KB’, ‘MB’, ‘GB’ (up to ‘YB’), with or without the
trailing ‘B’, are allowed and properly accounted for. Case is ignored in suffixes.

Examples:

>>> to_bytes('12')
12
>>> to_bytes('12B')
12
>>> to_bytes('12KB')
12000
>>> to_bytes('1G')
1000000000

2.2. Programmer Documentation 183

http://stackoverflow.com/a/10965572/459543

gc3pie Documentation, Release 2.6.8

Binary units ‘KiB’, ‘MiB’ etc. are also accepted:

>>> to_bytes('1KiB')
1024
>>> to_bytes('1MiB')
1048576

gc3libs.utils.to_str(arg, origin=’ascii’)
Convert arg to a Python text string.

If arg is already a text string (i.e., a unicode object in Python 2, and a str object in Python 3), then return it
unchanged. As an exception, if arg is None, return None (unchanged).

Second argument origin determines the handling of arg when arg is a byte-string:

• if origin is 'filesystem' then arg is converted to a text string using from_filesystem_bytes()
(which see);

• if origin is 'terminal' then conversion of arg is attempted using from_terminal_bytes()
(which see);

• otherwise, origin is interpreted as an encoding name, and byte string arg is decoded using that encoding’s
rules.

If arg is neither a text string nor a byte string, then conversion to string is attempted using Python’s built-in
str() function.

gc3libs.utils.touch(path)
Ensure a regular file exists at path.

If the file already exists, its access and modification time are updated.

(This is a very limited and stripped down version of the touch POSIX utility.)

gc3libs.utils.unlock(lock)
Release a previously-acquired lock.

Argument lock should be the return value of a previous gc3libs.utils.lock call.

See also: gc3libs.utils.lock()

gc3libs.utils.update_parameter_in_file(path, var_in, new_val, regex_in)
Updates a parameter value in a parameter file using predefined regular expressions in _loop_regexps.

Parameters

• path – Full path to the parameter file.

• var_in – The variable to modify.

• new_val – The updated parameter value.

• regex – Name of the regular expression that describes the format of the parameter file.

gc3libs.utils.write_contents(path, data)
Overwrite the contents of the file at path with the given data. If the file does not exist, it is created.

Example:

>>> import tempfile
>>> (fd, tmpfile) = tempfile.mkstemp()
>>> write_contents(tmpfile, 'big data here') and None # discard return value on
→˓Py3
>>> read_contents(tmpfile)
'big data here'

184 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

(If you run this test, remember to clean up afterwards)

>>> os.remove(tmpfile)

gc3libs.workflow

Implementation of task collections.

Tasks can be grouped into collections, which are tasks themselves, therefore can be controlled
(started/stopped/cancelled) like a single whole. Collection classes provided in this module implement the ba-
sic patterns of job group execution; they can be combined to form more complex workflows. Hook methods are
provided so that derived classes can implement problem-specific job control policies.

class gc3libs.workflow.AbortOnError
Mix-in class to make a SequentialTaskCollection turn to TERMINATED state as soon as one of the
tasks fail.

A second effect of mixing this class in is that the self.execution.returncode mirrors the return code of the last
finished task.

Note: For the mix-in to take effect, this class should be listed before the base task collection class, e.g.:

this works
class MyTaskCollection(AbortOnError, SequentialTaskCollection):
pass

this *does not* work
class MyOtherTaskCollection(SequentialTaskCollection, AbortOnError):
pass

See SequentialTaskCollection.next() and GitHub issue #512 for some caveats on applying this to
dynamically-built task collections.

class gc3libs.workflow.ChunkedParameterSweep(min_value, max_value, step, chunk_size,
**extra_args)

new_task(param, **extra_args)
Return the Task corresponding to the parameter value param.

This method must be overridden in subclasses to generate tasks.

update_state(**extra_args)
Like ParallelTaskCollection.update_state(), but also creates new tasks if less than chunk_size are running.

class gc3libs.workflow.DependentTaskCollection(tasks=None, **extra_args)
Run a set of tasks, respecting inter-dependencies between them.

Each task can list a number of tasks that need to be run before it; upon submission, a DependentTaskCollec-
tion creates a direct acyclic graph from that dependency information and ensures that no task is run before its
dependencies have been successfully executed.

The collection state is set to TERMINATED once all tasks have reached the same terminal status.

add(task, after=None)
Add a task to the collection.

2.2. Programmer Documentation 185

https://github.com/uzh/gc3pie/issues/512

gc3pie Documentation, Release 2.6.8

The task will be run after any tasks referenced in the after sequence have terminated their run. Alterna-
tively, a task can list tasks it depends upon in its .after attribute; i.e., the following two syntaxes are
equivalent:

>>> coll.add(task1, after=[task2])

>>> task1.after = [task2]
>>> coll.add(task1)

Note: tasks can only be added to a DependentTaskCollection while it’s in state NEW.

submit(resubmit=False, targets=None, **extra_args)
Start the current task in the collection.

class gc3libs.workflow.ParallelTaskCollection(tasks=None, **extra_args)
A ParallelTaskCollection runs all of its tasks concurrently.

The collection state is set to TERMINATED once all tasks have reached the same terminal status.

add(task)
Add a task to the collection.

attach(controller)
Use the given Controller interface for operations on the job associated with this task.

kill(**extra_args)
Terminate all tasks in the collection, and set collection state to TERMINATED.

progress()
Try to advance all jobs in the collection to the next state in a normal lifecycle.

redo(*args, **kwargs)
Reset collection and all included tasks to state NEW.

If not all included tasks should are in a terminal state or NEW, an AssertionError exception will be thrown.
See also Task.redo() for a listing of allowed run states when redo() is called.

submit(resubmit=False, targets=None, **extra_args)
Start all tasks in the collection.

terminated()
Set exitcode based on termination status of sub-tasks.

update_state(**extra_args)
Update state of all tasks in the collection.

class gc3libs.workflow.RetryableTask(task, max_retries=0, **extra_args)
Wrap a Task instance and re-submit it until a specified termination condition is met.

By default, the re-submission upon failure happens iff execution terminated with nonzero return code; the failed
task is retried up to self.max_retries times (indefinitely if self.max_retries is 0).

Override the retry method to implement a different retryal policy.

Note: The resubmission code is implemented in the terminated(), so be sure to call it if you override in
derived classes.

attach(controller)
Use the given Grid interface for operations on the job associated with this task.

changed
Evaluates to True if this task or any of its subtasks has been modified and should be saved to persistent
storage.

186 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

detach()
Remove any reference to the current grid interface. After this, calling any method other than attach()
results in an exception TaskDetachedFromControllerError being thrown.

fetch_output(*args, **extra_args)
Retrieve the outputs of the computational job associated with this task into directory output_dir, or, if that
is None, into the directory whose path is stored in instance attribute .output_dir.

If the execution state is TERMINATING, transition the state to TERMINATED (which runs the appropriate
hook).

See gc3libs.Core.fetch_output() for a full explanation.

Returns Path to the directory where the job output has been collected.

free(**extra_args)
Release any remote resources associated with this task.

See gc3libs.Core.free() for a full explanation.

kill(**extra_args)
Terminate the computational job associated with this task.

See gc3libs.Core.kill() for a full explanation.

peek(*args, **extra_args)
Download size bytes (at offset offset from the start) from the associated job standard output or error stream,
and write them into a local file. Return a file-like object from which the downloaded contents can be read.

See gc3libs.Core.peek() for a full explanation.

retry()
Return True or False, depending on whether the failed task should be re-submitted or not.

The default behavior is to retry a task iff its execution terminated with nonzero returncode and the maxi-
mum retry limit has not been reached. If self.max_retries is 0, then the dependent task is retried indefinitely.

Override this method in subclasses to implement a different policy.

submit(resubmit=False, targets=None, **extra_args)
Start the computational job associated with this Task instance.

update_state()
Update the state of the dependent task, then resubmit it if it’s TERMINATED and self.retry() is True.

class gc3libs.workflow.SequentialTaskCollection(tasks, **extra_args)
A SequentialTaskCollection runs its tasks one at a time.

After a task has completed, the next method is called with the index of the finished task in the self.tasks list; the
return value of the next method is then made the collection execution.state. If the returned state is RUNNING,
then the subsequent task is started, otherwise no action is performed.

The default next implementation just runs the tasks in the order they were given to the constructor, and sets the
state to TERMINATED when all tasks have been run.

add(task)
Add a task to the collection.

attach(controller)
Use the given Controller interface for operations on the job associated with this task.

kill(**extra_args)
Stop execution of this sequence. Kill currently-running task (if any), then set collection state to TERMI-
NATED.

2.2. Programmer Documentation 187

gc3pie Documentation, Release 2.6.8

next(done)
Return collection state or task to run after step number done is terminated.

This method is called when a task is finished; the done argument contains the index number of the
just-finished task into the self.tasks list. In other words, the task that just completed is available as
self.tasks[done].

The return value from next can be either a task state (i.e., an instance of Run.State), or a valid index number
for self.tasks. In the first case:

• if the return value is Run.State.TERMINATED, then no other jobs will be run;

• otherwise, the return value is assigned to execution.state and the next job in the self.tasks list is exe-
cuted.

If instead the return value is a (nonnegative) number, then tasks in the sequence will be re-run starting from
that index.

The default implementation runs tasks in the order they were given to the constructor, and sets the state
to TERMINATED when all tasks have been run. This method can (and should) be overridden in derived
classes to implement policies for serial job execution.

progress()
Advance the associated job through all states of a regular lifecycle. In detail:

1. If execution.state is NEW, the associated job is started.

2. The state is updated until it reaches TERMINATED

3. Output is collected and the final returncode is returned.

An exception TaskError is raised if the job hits state STOPPED or UNKNOWN during an update in phase
2.

When the job reaches TERMINATING state, the output is retrieved; if this operation is successfull, state is
advanced to TERMINATED.

Once the job reaches TERMINATED state, the return code (stored also in .returncode) is returned; if the
job is not yet in TERMINATED state, calling progress returns None.

Raises exception UnexpectedStateError if the associated job goes into state STOPPED
or UNKNOWN

Returns final returncode, or None if the execution state is not TERMINATED.

redo(from_stage=0, *args, **kwargs)
Rewind the sequence to a given stage and reset its state to NEW.

In addition, when called with argument from_stage set to the total number of tasks in the collection, will
try continuing the sequence by (ultimately) calling self.next() to get a new task.

stage()
Return the Task that is currently executing, or None (if finished or not yet started).

submit(resubmit=False, targets=None, **extra_args)
Start the current task in the collection.

update_state(**extra_args)
Update state of the collection, based on the jobs’ statuses.

class gc3libs.workflow.StagedTaskCollection(**extra_args)
Simplified interface for creating a sequence of Tasks. This can be used when the number of Tasks to run is fixed
and known at program writing time.

188 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

A StagedTaskCollection subclass should define methods stage0, stage1, . . . up to stageN (for some arbitrary
value of N positive integer). Each of these stageN must return a Task instance; the task returned by the stage0
method will be executed first, followed by the task returned by stage1, and so on. The sequence stops at the first
N such that stageN is not defined.

The exit status of the whole sequence is the exit status of the last Task instance run. However, if any of the
stageN methods returns an integer value instead of a Task instance, then the sequence stops and that number is
used as the sequence exit code.

next(done)
Return collection state or task to run after step number done is terminated.

This method is called when a task is finished; the done argument contains the index number of the
just-finished task into the self.tasks list. In other words, the task that just completed is available as
self.tasks[done].

The return value from next can be either a task state (i.e., an instance of Run.State), or a valid index number
for self.tasks. In the first case:

• if the return value is Run.State.TERMINATED, then no other jobs will be run;

• otherwise, the return value is assigned to execution.state and the next job in the self.tasks list is exe-
cuted.

If instead the return value is a (nonnegative) number, then tasks in the sequence will be re-run starting from
that index.

The default implementation runs tasks in the order they were given to the constructor, and sets the state
to TERMINATED when all tasks have been run. This method can (and should) be overridden in derived
classes to implement policies for serial job execution.

class gc3libs.workflow.StopOnError
Mix-in class to make a SequentialTaskCollection turn to STOPPED state as soon as one of the tasks
fail.

A second effect of mixing this class in is that the self.execution.returncode mirrors the return code of the last
finished task.

Note: For the mix-in to take effect, this class should be listed before the base task collection class, e.g.:

this works
class MyTaskCollection(StopOnError, SequentialTaskCollection):
pass

this *does not* work
class MyOtherTaskCollection(SequentialTaskCollection, StopOnError):
pass

See SequentialTaskCollection.next() and GitHub issue #512 for some caveats on applying this to
dynamically-built task collections.

class gc3libs.workflow.TaskCollection(tasks=None, **extra_args)
Base class for all task collections. A “task collection” is a group of tasks, that can be managed collectively as a
single one.

A task collection implements the same interface as the Task class, so you can use a TaskCollection everywhere a
Task is required. A task collection has a state attribute, which is an instance of gc3libs.Run.State; each concrete
collection class decides how to deduce a collective state based on the individual task states.

2.2. Programmer Documentation 189

https://github.com/uzh/gc3pie/issues/512

gc3pie Documentation, Release 2.6.8

add(task)
Add a task to the collection.

attach(controller)
Use the given Controller interface for operations on the job associated with this task.

changed
Evaluates to True if this task or any of its subtasks has been modified and should be saved to persistent
storage.

detach()
Remove any reference to the current grid interface. After this, calling any method other than attach()
results in an exception TaskDetachedFromControllerError being thrown.

fetch_output(output_dir=None, overwrite=False, changed_only=True, **extra_args)
Retrieve the outputs of the computational job associated with this task into directory output_dir, or, if that
is None, into the directory whose path is stored in instance attribute .output_dir.

If the execution state is TERMINATING, transition the state to TERMINATED (which runs the appropriate
hook).

See gc3libs.Core.fetch_output() for a full explanation.

Returns Path to the directory where the job output has been collected.

free()
This method just asks the Engine to free the contained tasks.

iter_tasks()
Iterate over non-collection tasks enclosed in this collection.

iter_workflow()
Returns an iterator that will traverse the whole tree of tasks.

kill(**extra_args)
Terminate the computational job associated with this task.

See gc3libs.Core.kill() for a full explanation.

peek(what, offset=0, size=None, **extra_args)
Raise a gc3libs.exceptions.InvalidOperation error, as there is no meaningful semantics that can be defined
for peek into a generic collection of tasks.

remove(task)
Remove a task from the collection.

stats(only=None)
Return a dictionary mapping each state name into the count of tasks in that state. In addition, the following
keys are defined:

• ok: count of TERMINATED tasks with return code 0

• failed: count of TERMINATED tasks with nonzero return code

• total: count of managed tasks, whatever their state

If the optional argument only is not None, tasks whose class is not contained in only are ignored.

Parameters only (tuple) – Restrict counting to tasks of these classes.

submit(resubmit=False, targets=None, **extra_args)
Start the computational job associated with this Task instance.

190 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.8

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with whatever
exit status, see returncode) and the final output has been retrieved.

Default implementation for TaskCollection is to set the exitcode to the maximum of the exit codes of its
tasks, or None if no task has a numeric exit code.

If no tasks were run, the exitcode is set to 0.

update_state(**extra_args)
Update the running state of all managed tasks.

gc3utils

gc3utils.commands

gc3utils.frontend

This is the main entry point for command gc3utils – a simple command-line frontend to distributed resources

This is a generic front-end code; actual implementation of commands can be found in gc3utils.commands

gc3utils.frontend.main()
Generic front-end function to invoke the commands in gc3utils/commands.py

2.3 Contributors documentation

This section contains information needed by people who want to contribute code to GC3Pie.

2.3.1 Contributing to GC3Pie

First of all, thanks for wanting to contribute to GC3Pie! GC3Pie is an open-ended endeavour, and we’re always looking
for new ideas, suggestions, and new code. (And also, for fixes to bugs old and new ;-))

The paragraphs below should brief you about the organization of the GC3Pie code repositories, and the suggested
guidelines for code and documentation style. Feel free to request more info or discuss the existing recommendations
on the GC3Pie mailing list

Code repository organization

GC3Pie code is hosted in a GitHub repository, which you can access online or using any Git client.

We encourage anyone to fork the repository and contribute back modifications in the form of pull requests.

The master branch should always be deployable: code in master should normally run without major known issues (but
it may contain code that has yet not been released to PyPI). A tag is created on the master branch each time code is
released to PyPI. Development happens on separate branches (or forks) which are then merged into master via pull
requests.

2.3. Contributors documentation 191

mailto:gc3pie@googlegroups.com
https://github.com/
http://github.com/uzh/gc3pie/
https://git-scm.org/
https://help.github.com/articles/using-pull-requests/
http://pypi.python.org/
http://pypi.python.org/
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/

gc3pie Documentation, Release 2.6.8

Repository structure

The GC3Pie code repository has the following top-level structure; there is one subdirectory for each of the main parts
of GC3Pie:

• The gc3libs directory contains the GC3Libs code, which is the core of GC3Pie. GC3Libs are extensively
described in the API section of this document; read the module descriptions to find out where your new suggested
functionality would suit best. If unsure, ask on the GC3Pie mailing list.

• The gc3utils directory contains the sources for the low-level GC3Utils command-line utilities.

• The gc3apps directory contains the sources for higher level scripts that implement some computational use
case of independent interest.

The gc3apps directory contains one subdirectory per application script. Actually, each subdirectory can
contain one or more Python scripts, as long as they form a coherent bundle; for instance, Rosetta is a suite of
applications in computational biology: there are different GC3Apps script corresponding to different uses of the
Rosetta suite, all of them grouped into the rosetta subdirectory.

Subdirectories of the gc3apps directory follow this naming convention:

– the directory name is the main application name, if the application that the scripts wrap is a known,
publicly-released computational application (e.g., Rosetta, GAMESS)

– the directory name is the requestor’s name, if the application that the scripts wrap is some research code
that is being internally developed. For instance, the bf.uzh.ch directory contains scripts that wrap code
for economic simulations that is being developed at the Banking and Finance Institute of the University of
Zurich

Package generation

Due to issue 329, we don’t use the automatic discovery feature of setuptools, so the files included in the distributed
packages are those in the MANIFEST.in file, please check The MANIFEST.in template section of the python docu-
mentation for a syntax reference. We usually include only code, documentation, and related files. We also include the
regression tests, but we do not include the application tests in gc3apps/*/test directories.

Testing the code

In developing GC3Pie we try to use a Test Driven Development approach, in the light of the quote: It’s tested or it’s
broken. We use tox and pytest as test runners, which make creating tests very easy.

Running the tests

You can both run tests on your current environment using pytest or use tox_ to create and run tests on separate
environments. We suggest you to use pytest while you are still fixing the problem, in order to be able to run only
the failing test, but we strongly suggest you to run tox before committing your code.

Running tests with pytest

In order to have the pytest program, you need to install pytest_ in your current environment and gc3pie must be
installed in develop mode:

pip install pytest
python setup.py develop

192 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.msg.ameslab.gov/gamess/
http://www.bf.uzh.ch/
http://www.bf.uzh.ch/
https://github.com/uzh/gc3pie/issues/329
http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template
http://en.wikipedia.org/wiki/Test-driven_development
http://tox.testrun.org/latest/
https://docs.pytest.org/en/latest/

gc3pie Documentation, Release 2.6.8

Then, from the top level directory, run the tests with:

pytest -v

PyTest will then crawl the directory tree looking for available tests. You can also specify a subset of the available sets,
by:

• specifying the directory from which nose should start looking for tests:

Run only backend-related tests
pytest -v gc3libs/backends/

• specifying the file containing the tests you want to run:

Run only tests contained in a specific file
pytest -v gc3libs/tests/test_session.py

• specifying the id of the test (a test ID is the file name, a double colon, and the test function name):

Run only test `test_engine_limits` in file `test_engine.py`
pytest test_engine.py::test_engine_limits

Running multiple tests

In order to test GC3Pie against multiple version of python we use tox, which creates virtual environments for all
configured python version, runs pytest inside each one of them, and prints a summary of the test results.

You don’t need to have tox installed in the virtual environment you use to develop gc3pie, you can create a new
virtual environment and install tox on it with.

Running tox is straightforward; just type tox on the command-line in GC3Pie’s top level source directory.

The default tox.ini file shipped with GC3Pie attempts to test all Python versions from 2.4 to 2.7 (inclusive). If you
want to run tests only for a specific version of python, for instance Python 2.6, use the -e option:

tox -e py26
[...]
Ran 118 tests in 14.168s

OK (SKIP=9)
__ [tox summary] _____________
→˓__
[TOX] py26: commands succeeded
[TOX] congratulations :)

Option -r instructs tox to re-build the testing virtual environment. This is usually needed when you update the
dependencies of GC3Pie or when you add or remove command line programs or configuration files. However, if you
feel that the environments can be unclean, you can clean up everything by:

1) deleting all the *.pyc file in your source tree:

find . -name '*.pyc' -delete

2) deleting and recreating tox virtual environments:

tox -r

2.3. Contributors documentation 193

https://docs.pytest.org/en/latest/
http://tox.testrun.org/latest/
https://docs.pytest.org/en/latest/
http://tox.testrun.org/latest/

gc3pie Documentation, Release 2.6.8

Writing tests

Please remember that it may be hard to understand, whenever a test fails, if it’s a bug in the code or in the tests!
Therefore please remember:

• Try to keep tests as simple as possible, and always simpler than the tested code. (Debugging is twice as hard as
writing the code in the first place., Brian W. Kernighan and P. J. Plauger)

• Write multiple indipendent tests to test different possible behavior and/or different methods of a class.

• Tests should cover methods and functions, but also specific use cases.

• If you are fixing a bug, it’s good practice to write a test to check if the bug is still there, in order to avoid to
re-include the bug in the future.

• Tests should clean up every temporary file they create.

Writing tests is very easy: just create a file whose name begins with test_, then put in it some functions which name
begins with test_; the pytest framework will automatically call each one of them. Moreover, pytest will run also any
pytest which will be found in the code.

The module gc3libs.testing contains a few helpers that make writing GC3Pie tests easier.

Full documentation of the pytest framework is available at the pytest website.

Organizing tests

Each single python file should have a test file inside a tests subpackage with filename created by prefixing test_
to the filename to test. For example, if you created a file foo.py, there should be a file tests/test_foo.py
which will contains tests for foo.py.

Even though following the naming convention above is not always possible, each test regarding a specific compo-
nent should be in a file inside a tests directory inside that component. For instance, tests for the subpackage
gc3libs.persistence are located inside the directory gc3libs/persistence/tests but are not named after the
specific file.

Coding style

Python code should be written according to ‘PEP 8‘_ recommendations. (And by this we mean not just the code
style.)

Please take the time to read PEP 8 through, as it is widely-used across the Python programming community – it will
benefit your contribution to any free/open-source Python project!

Anyway, here’s a short summary for the impatient:

• use English nouns to name variables and classes; use verbs to name object methods.

• use 4 spaces to indent code; never use TAB characters.

• use lowercase letters for method and variable names; use underscores _ to separate words in multi-word identi-
fiers (e.g., lower_case_with_underscores)

• use “CamelCase” for class and exception names.

• but, above all, do not blindly follow the rules and try to do the thing that enhances code clarity and readability!

Here’s other code conventions that apply to GC3Pie code; since they are not always widely followed or known, a short
rationale is given for each of them.

194 Chapter 2. Table of Contents

https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
http://www.python.org/dev/peps/pep-0008/

gc3pie Documentation, Release 2.6.8

• Every class and function should have a docstring. Use reStructuredText markup for docstrings and documenta-
tion text files.

Rationale: A concise English description of the purpose of a function can be faster to read than the code. Also,
undocumented functions and classes do not appear in this documentation, which makes them invisible to new
users.

• Use fully-qualified names for all imported symbols; i.e., write import foo and then use foo.bar() instead
of from foo import bar. If there are few imports from a module, and the imported names do clearly
belong to another module, this rule can be relaxed if this enhances readability, but never do use unqualified
names for exceptions.

Rationale: There are so many functions and classes in GC3Pie, so it may be hard to know to which module the
function count belongs. (Think especially of people who have to bugfix a module they didn’t write in the first
place.)

• When calling methods or functions that accept both positional and optional arguments like:

def foo(a, b, key1=defvalue1, key2=defvalue2):

always specify the argument name for optional arguments, which means do not call:

foo(1, 2, value1, value2)

but call instead:

foo(1, 2, key1=value1, key2=value2)

Rationale: calling the function with explicit argument names will reduce the risk of hit some compatibility
issues. It is perfectly fine, from the point of view of the developer, to change the signature of a function by
swapping two different optional arguments, so this change can happen any time, although changing positional
arguments will break backward compatibility, and thus it’s usually well advertised and tested.

• Use double quotes " to enclose strings representing messages meant for human consumption (e.g., log messages,
or strings that will be printed on the users’ terminal screen).

Rationale: The apostrophe character ' is a normal occurrence in English text; use of the double quotes mini-
mizes the chances that you introduce a syntax error by terminating a string in its middle.

• Follow normal typographic conventions when writing user messages and output; prefer clarity and avoid ambi-
guity, even if this makes the messages longer.

Rationale: Messages meant to be read by users will be read by users; and if they are not read by users, they will
be fired back verbatim on the mailing list on the next request for support. So they’d better be clear, or you’ll find
yourself wondering what that message was intended to mean 6 months ago.

Common typographical conventions enhance readability, and help users identify lines of readable text.

• Use single quotes ' for strings that are meant for internal program usage (e.g., attribute names).

Rationale: To distinguish them visually from messages to the user.

• Use triple quotes """ for docstrings, even if they fit on a single line.

Rationale: Visual distinction.

• Each file should have this structure:

– the first line is the hash-bang line,

– the module docstring (explain briefly the module purpose and features),

– the copyright and licence notice,

2.3. Contributors documentation 195

http://docutils.sourceforge.net/rst.html
http://en.wikipedia.org/wiki/Shebang_(Unix)

gc3pie Documentation, Release 2.6.8

– module imports (in the order suggested by PEP 8)

– and then the code. . .

Rationale: The docstring should be on top so it’s the first thing one reads when inspecting a file. The copyright
notice is just a waste of space, but we’re required by law to have it.

Documentation

The documentation can be found in gc3pie/docs. It is generated using Sphinx (http://sphinx-doc.org/contents.html).

GC3Pie documentation is divided in three sections:

• User Documentation: info on how to install, configure and run GC3Pie applications.

• Programmer Documentation: info for programmers who want to use the GC3Pie libraries to write their own
scripts and applications.

• Contributors documentation: detailed information on how to contribute to GC3Pie and get your code included
in the main library.

The GC3Libs programming API <gc3libs_> is the most relevant part of the docs for developers contributing code and
is generated automatically from the docstrings inside the modules. Automatic documentation in Sphinx is described
under http://sphinx-doc.org/tutorial.html#autodoc. While updating the docs of existing modules is simply done by
running make html, adding documentation for a new module requires one of the following two procedures:

• Add a reference to the new module in docs/programmers/api/index.rst. Additionally, create a file
that enables automatic documentation for the module. For the module core.py, for example, automatic doc-
umentation is enabled by a file docs/programmers/api/gc3libs/core.rst with the following con-
tent:

`gc3libs.core`
==============

.. automodule:: gc3libs.core
:members:

• Execute the script docs/programmers/api/makehier.sh, which automates the above. Note that the
makehier.sh script will re-create all .rst files for all GC3Pie modules, so check if there were some unex-
pected changes (e.g., with git status) before you commit!

Docstrings are written in reStructuredText format. To be able to cross-reference between differen objects in the docu-
mentation, you should be familiar with Sphinx domains in general and the Python domain in particular.

Questions?

Please write to the GC3Pie mailing list; we try to do our best to answer promptly.

2.4 Publications

This is an index of papers, slide decks, and other assorted material on GC3Pie. Most recent contributions are listed
first.

If you would like to add your contributions here, please send a message to the GC3Pie mailing-list (or use the web
interface).

196 Chapter 2. Table of Contents

https://www.python.org/dev/peps/pep-0008
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/tutorial.html#autodoc
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/domains.html#the-python-domain
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
mailto:gc3pie@googlegroups.com
mailto:gc3pie@googlegroups.com
https://groups.google.com/forum/#!forum/gc3pie
https://groups.google.com/forum/#!forum/gc3pie

gc3pie Documentation, Release 2.6.8

2.4.1 GC3Pie overviews

The following slides and papers provide an overview of GC3Pie and its features. (Most recent entries first.)

• GC3Pie: orchestrating large-scale execution of scientific applications. Presentation of GC3Pie and its features,
especially focusing on the GC3Pie backend for EasyBuild. Held at the HPC-CH forum. June 11, 2015.

• GC3Pie: orchestrating large-scale execution of scientific applications. Presentation of GC3Pie and its features
at the HPC-CH forum. June 18, 2014.

• Presentation of GC3Pie and GC3Libs (PDF) at the a private meeting with the developers of iBRAIN2/3 (later
renamed to screeningBee), May 2012.

• GC3Pie: A Python framework for high-throughput computing (MAFFIOLETTI, Sergio, and Riccardo Murri).
Proceedings of the EGI Community Forum 2012/EMI Second Technical Conference (EGICF12-EMITC2). 26-
30 March, 2012. Munich, Germany. Published online at, id. 143. Vol. 1. 2012.

• Presentation of GC3Pie and GC3Libs (PDF) at the NorduGrid conference 2011.

2.4.2 Programming examples

The following slides focus on GC3Libs programming. (Most recent entries first.)

• Global Optimization with GC3Pie (PDF). Poster presented at the EuroSciPy 2013 conference, introducing the
GC3Pie numerical optimizer.

• Computational workflows with GC3Pie (PDF). Poster presented at the EGI Community Forum 2012.

• Computational workflows with GC3Pie (PDF). Poster presented at the EuroSciPy 2011 conference.

• Introduction to GC3Pie and its programming model (HTML, PDF); slides presented at the Advanced School on
High Performance and Grid Computing at ICTP Trieste.

• Introduction to GC3Libs programming (HTML, PDF); slides presented at the SMSCG Project meeting 2011.

• Introduction to GC3Libs programming (HTML, PDF); slides presented at a private meeting with the Selectome
developers.

2.4.3 Use of GC3Pie in scientific applications

These papers and presentations cover specific tools built on top of GC3Pie, or applications of GC3Pie to research in a
specific domain. (Most recent entries first.)

• TRAL: Tandem repeat annotation library (Schaper, E., Korsunsky, A., Messina, A., Murri, R., Pečerska, J.,
Stockinger, H., . . . & Anisimova, M.). Bioinformatics, btv306 (2015).

• Selectome update: quality control and computational improvements to a database of positive selection (Moretti,
S., Laurenczy, B., Gharib, W. H., Castella, B., Kuzniar, A., Schabauer, H., . . . & Robinson-Rechavi, M.).
Nucleic acids research, 42(D1), D917-D921, 2014.

• Wireless Mesh Networks and Cloud Computing for Real Time Environmental Simulations (Kropf, P., Schiller,
E., Brunner, P., Schilling, O., Hunkeler, D., & Lapin, A.). In Recent Advances in Information and Communi-
cation Technology (pp. 1-11). Springer International Publishing. * Real-Time Environmental Monitoring for
Cloud-Based Hydrogeological Modeling with HydroGeoSphere (Lapin, A., Schiller, E., Kropf, P., Schilling, O.,
Brunner, P., Kapic, A. J., . . . & Maffioletti, S.). In High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and
Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on (pp. 959-965). IEEE, August 2014.

• Thermal and Hydrological Response of Rock Glaciers to Climate Change: A Scenario Based Simulation Study
(Apaloo, J.). University of Waterloo, Canada, 2014.

2.4. Publications 197

http://gc3pie.googlecode.com/svn/wiki/slides/hpc-ch.2015-06-11/slides.pdf
http://gc3pie.googlecode.com/svn/wiki/slides/hpc-ch.2014-06-18/gc3pie.pdf
http://gc3pie.googlecode.com/svn/wiki/slides/iBRAIN2-2012.05/talk.pdf
http://screeningbee.sourceforge.net/doku.php
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=162
http://gc3pie.googlecode.com/svn/wiki/slides/ng2011-2011.05/gc3pie-ng2011.pdf
http://indico.hep.lu.se/conferenceDisplay.py?confId=1047
http://gc3pie.googlecode.com/svn/wiki/posters/euroscipy2011/gc3pie-euroscipy2013.pdf
http://www.euroscipy.org/conference/euroscipy2013
http://gc3pie.googlecode.com/svn/wiki/posters/egi-community-forum-2012/gc3pieegi2012.pdf
http://cf2012.egi.eu/
http://gc3pie.googlecode.com/svn/wiki/posters/euroscipy2011/gc3pie-euroscipy2011.pdf
http://www.euroscipy.org/conference/euroscipy2011
http://gc3pie.googlecode.com/svn/wiki/slides/grid-school-trieste-2011.04/trieste.html
http://gc3pie.googlecode.com/svn/wiki/slides/grid-school-trieste-2011.04/trieste.pdf
http://cdsagenda5.ictp.trieste.it/full_display.php?ida=a10135
http://cdsagenda5.ictp.trieste.it/full_display.php?ida=a10135
http://www.ictp.it
http://gc3pie.googlecode.com/svn/wiki/slides/smscg-meeting-2011.03/lausanne.html
http://gc3pie.googlecode.com/svn/wiki/slides/smscg-meeting-2011.03/lausanne.pdf
http://www.smscg.ch/WP/management/meetings/
http://gc3pie.googlecode.com/svn/wiki/slides/selectome-lausanne-2011.02/lausanne.html
http://gc3pie.googlecode.com/svn/wiki/slides/selectome-lausanne-2011.02/lausanne.pdf
http://wiki.isb-sib.ch/grid-selectome/
http://bioinformatics.oxfordjournals.org/content/early/2015/05/17/bioinformatics.btv306.short
http://nar.oxfordjournals.org/content/42/D1/D917.short
http://link.springer.com/chapter/10.1007/978-3-319-06538-0_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7056861
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7056861
https://uwspace.uwaterloo.ca/handle/10012/8142

gc3pie Documentation, Release 2.6.8

• Parameter estimation of complex mathematical models of human physiology using remote simulation distributed
in scientific cloud (Kulhanek, T., Mateják, M., Silar, J., & Kofranek, J.). In Biomedical and Health Informatics
(BHI), 2014 IEEE-EMBS International Conference on (pp. 712-715). IEEE, June 2014.

• Towards a swiss national research infrastructure (Kunszt, P., Maffioletti, S., Flanders, D., Eurich, M., Bohnert,
T., Edmonds, A., . . . & Schiller, E.). arXiv preprint arXiv:1404.7608.

• User Interaction and Data Management for Large Scale Grid Applications. Journal of Grid Computing (Costan-
tini, A., Gervasi, O., Zollo, F., & Caprini, L.), 12(3), 485-497, 2014.

• Application of large-scale computing infrastructure for diverse environmental research applications using
GC3Pie (Maffioletti, S., Dawes, N., Bavay, M., Sarni, S., & Lehning, M.). In EGU General Assembly Con-
ference Abstracts (Vol. 15, p. 13222). April 2013.

• gcodeml: A Grid-enabled Tool for Detecting Positive Selection in Biological Evolution (Moretti, S., Murri, R.,
Maffioletti, S., Kuzniar, A., Castella, B., Salamin, N., . . . & Stockinger, H.). Studies in health technology and
informatics, 175, 59-68 (2012).

• A Grid execution model for Computational Chemistry Applications using the GC3Pie framework and AppPot
(Costantini, A., Murri, R., Maffioletti, S., Rampino, S., & Laganà, A.). Computational Science and Its Applica-
tions–ICCSA 2012. Springer Berlin Heidelberg, 2012. 401-416.

• Running GAMESS jobs with ggamess. Slides presented at a Baldridge Research Group meeting, Sept 2012.

• The MP2 binding energy of the ethene dimer and its dependence on the auxiliary basis sets: a benchmark study
using a newly developed infrastructure for the processing of quantum chemical data (Glöß, A., Brändle, M. P.,
Klopper, W., & Lüthi, H. P.). Molecular Physics, 110(19-20), 2523-2534 (2012).

• Three tools for high-throughput computing with GAMESS (PDF). Slides presented at a Baldridge Research
Group meeting, May 2011.

• Enabling High-Throughput Computational Chemistry on the Grid (PDF). Poster presented at the EGI User
Forum 2011.

• GRunDB: a tool for validating QM algorithms in GAMESS-US (PDF). Slides presented at the Swiss Grid Day
2010.

• GC3Pie and related tools for high-throughput computational chemistry (PowerPoint PPT slides). Presentation
held at the Databases in Quantum Chemistry workshop, September 22-25, 2010 in Zaragoza, Spain.

2.5 List of contributors to GC3Pie

This is a list of people that have contributed to GC3Pie, in any form: be it enhancements to the code or testing out
releases and new features, or simply contributing suggestions and proposing enhancements. To them all, our gratitude
for trying to make GC3Pie a better tool.

The list is sorted by last name. Please send an email to <gc3pie-dev@googlegroups.com> for corrections.

• Tyanko Aleksiev <tyanko.alexiev@gmail.com>

• Niko Ehrenfeuchter <nikolaus.ehrenfeuchter@unibas.ch>

• Benjamin Jonen <benjamin.jonen@gmail.com>

• Sergio Maffioletti <sergio.maffioletti@gc3.uzh.ch>

• Daniel McDonald <daniel.mcdonald@uzh.ch>

• Antonio Messina <arcimboldo@gmail.com>

• Mark Monroe <markjmonroe@yahoo.com>

198 Chapter 2. Table of Contents

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6864463
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6864463
http://arxiv.org/pdf/1404.7608
http://link.springer.com/article/10.1007/s10723-014-9300-0
http://adsabs.harvard.edu/abs/2013EGUGA..1513222M
http://adsabs.harvard.edu/abs/2013EGUGA..1513222M
http://arxiv.org/pdf/1203.3092
http://link.springer.com/content/pdf/10.1007/978-3-642-31125-3_31.pdf
http://gc3pie.googlecode.com/svn/wiki/slides/kb2011.09/ggames.pdf
http://www.oci.uzh.ch/group.pages/baldridge/index.php
http://www.tandfonline.com/doi/abs/10.1080/00268976.2012.708793
http://www.tandfonline.com/doi/abs/10.1080/00268976.2012.708793
http://gc3pie.googlecode.com/svn/wiki/slides/kb2011.05/gc3pie-for-compchem.pdf
http://www.oci.uzh.ch/group.pages/baldridge/index.php
http://www.oci.uzh.ch/group.pages/baldridge/index.php
http://gc3pie.googlecode.com/svn/wiki/posters/egi-user-forum-2011/GC3Pie_EGI-UF2011.pdf
http://uf2011.egi.eu/
http://uf2011.egi.eu/
http://gc3pie.googlecode.com/svn/wiki/slides/sgd2010/grundb.pdf
http://www.swing-grid.ch/event/242148-swiss-grid-day-2010
http://www.swing-grid.ch/event/242148-swiss-grid-day-2010
http://gc3pie.googlecode.com/svn/wiki/slides/zcam-zaragoza-2010.09/ZCAM_workshop_20100923_final.pptm
http://neptuno.unizar.es/events/qcdatabases2010/
mailto:tyanko.alexiev@gmail.com
mailto:nikolaus.ehrenfeuchter@unibas.ch
mailto:benjamin.jonen@gmail.com
mailto:sergio.maffioletti@gc3.uzh.ch
mailto:daniel.mcdonald@uzh.ch
mailto:arcimboldo@gmail.com
mailto:markjmonroe@yahoo.com

gc3pie Documentation, Release 2.6.8

• Riccardo Murri <riccardo.murri@gmail.com>

• Tom Osika <tom.osika@kitware.com>

• Michael Packard <mrghort@gmail.com>

• Xin Zhou <xin.zhou1983@gmail.com>

2.6 Glossary

API Acronym of Application Programming Interface. An API is a description of the way one piece of soft-
ware asks another program to perform a service (quoted from: http://www.computerworld.com/s/article/43487/
Application_Programming_Interface which see for a more detailed explanation).

Command-line The sequence of words typed at the terminal prompt in order to run a specified application.

Command-line option Arguments to a command (i.e., words on the command line) that select variants to the usual
behavior of the command. For instance, a command-line option can request more verbose reporting.

Traditionally, UNIX command-line options consist of a dash (-), followed by one or more lowercase letters, or
a double-dash (--) followed by a complete word or compound word.

For example, the words -h or --help usually instruct a command to print a short usage message and exit
immediately after.

Core A single computing unit. This was called a CPU until manufacturers started packing many processing units
into a single package: now the term CPU is used for the package, and core is one of the several independent
processing units within the package.

CPU Time The total time that computing units (processor core) are actively executing a job. For single-threaded
jobs, this is normally less then the actual duration (‘wall-clock time’ or walltime), because some time is lost in
I/O and system operations. For parallel jobs the CPU time is normally larger than the duration, because several
processor cores are active on the job at the same time; the quotient of the CPU time and the duration measures
the efficiency of the parallel job.

Job A computational job is a single run of a non-interactive application. The prototypical example is a run of
GAMESS on a single input file.

Persistent Used in the sense of preserved across program stops and system reboots. In practice, it just means that the
relevant data is stored on disk or in some database.

Resource Short for computational resource: any cluster or Grid where a job can run.

State A one-word indication of a computational job execution status (e.g., RUNNING or TERMINATED). The terms
state and status are used interchangeably in GC3Pie documentation.

STDERR Abbreviation for “standard error stream”; it is the sequence of all text messages that a command prints to
inform the user of problems or to report on operations progress. The Linux/UNIX system allows two separate
output streams, one for output proper, named STDOUT , and STDERR for “error messages”. It is entirely up to
the command to tag a message as “standard output” or “standard error”.

STDOUT Abbreviation for “standard output stream”. It is the sequence of all characters that constitute the output of
a command. The Linux/UNIX system allows two separate output streams, one for output proper, and one for
“error messages”, dubbed STDERR. It is entirely up to the command to tag a message as “standard output” or
“standard error”.

Session A persistent collection of GC3Pie tasks and jobs. Sessions are used by The GC3Apps software to store job
status across program runs. A session is specified by giving the filesystem path to a session directory: the
directory contains some files with meta-data about the tasks that comprise the session. It is also possible to
simulate a session by specifying a task store URL (path to a filesystem directory where the jobs are stored, or

2.6. Glossary 199

mailto:riccardo.murri@gmail.com
mailto:tom.osika@kitware.com
mailto:mrghort@gmail.com
mailto:xin.zhou1983@gmail.com
http://www.computerworld.com/s/article/43487/Application_Programming_Interface
http://www.computerworld.com/s/article/43487/Application_Programming_Interface
http://www.msg.ameslab.gov/gamess/
http://gc3pie.googlecode.com/

gc3pie Documentation, Release 2.6.8

connection URL to a database); in this case the session meta-data will be reconstructed from the set of tasks in
the store.

Walltime Short for wall-clock time: indicates the total running time of a job.

200 Chapter 2. Table of Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

201

gc3pie Documentation, Release 2.6.8

202 Chapter 3. Indices and tables

Python Module Index

g
gc3libs, 83
gc3libs.application, 95
gc3libs.application.apppot, 95
gc3libs.application.codeml, 95
gc3libs.application.demo, 96
gc3libs.application.gamess, 96
gc3libs.application.rosetta, 97
gc3libs.application.turbomole, 98
gc3libs.authentication, 99
gc3libs.authentication.ec2, 100
gc3libs.authentication.openstack, 100
gc3libs.authentication.ssh, 100
gc3libs.backends, 100
gc3libs.backends.batch, 102
gc3libs.backends.lsf, 104
gc3libs.backends.noop, 104
gc3libs.backends.pbs, 106
gc3libs.backends.sge, 106
gc3libs.backends.shellcmd, 107
gc3libs.backends.slurm, 110
gc3libs.backends.transport, 111
gc3libs.backends.vmpool, 111
gc3libs.cmdline, 112
gc3libs.config, 119
gc3libs.core, 122
gc3libs.debug, 130
gc3libs.defaults, 131
gc3libs.events, 131
gc3libs.exceptions, 131
gc3libs.optimizer, 135
gc3libs.optimizer.dif_evolution, 137
gc3libs.optimizer.drivers, 139
gc3libs.optimizer.extra, 141
gc3libs.persistence, 141
gc3libs.persistence.accessors, 143
gc3libs.persistence.filesystem, 146
gc3libs.persistence.idfactory, 147
gc3libs.persistence.serialization, 148

gc3libs.persistence.sql, 148
gc3libs.persistence.store, 149
gc3libs.poller, 151
gc3libs.quantity, 153
gc3libs.session, 159
gc3libs.template, 162
gc3libs.testing, 164
gc3libs.testing.helpers, 164
gc3libs.url, 165
gc3libs.utils, 169
gc3libs.workflow, 185
gc3utils, 191
gc3utils.frontend, 191

203

gc3pie Documentation, Release 2.6.8

204 Python Module Index

Index

A
AbortOnError (class in gc3libs.workflow), 185
add() (gc3libs.core.BgEngine method), 122
add() (gc3libs.core.Core method), 124
add() (gc3libs.core.Engine method), 127
add() (gc3libs.session.Session method), 160
add() (gc3libs.workflow.DependentTaskCollection

method), 185
add() (gc3libs.workflow.ParallelTaskCollection

method), 186
add() (gc3libs.workflow.SequentialTaskCollection

method), 187
add() (gc3libs.workflow.TaskCollection method), 189
add_params() (gc3libs.authentication.Auth method),

99
add_vm() (gc3libs.backends.vmpool.VMPool method),

112
adjoin() (gc3libs.url.Url method), 167
ANY_OUTPUT (in module gc3libs), 85
API, 199
append() (gc3libs.utils.History method), 170
Application (class in gc3libs), 85
application_name (gc3libs.Application attribute),

87
ApplicationDescriptionError, 132
AppPotApplication (class in

gc3libs.application.apppot), 95
at_most_once_per_cycle()

(gc3libs.core.BgEngine static method), 122
attach() (gc3libs.Task method), 92
attach() (gc3libs.workflow.ParallelTaskCollection

method), 186
attach() (gc3libs.workflow.RetryableTask method),

186
attach() (gc3libs.workflow.SequentialTaskCollection

method), 187
attach() (gc3libs.workflow.TaskCollection method),

190
Auth (class in gc3libs.authentication), 99

auth_factory (gc3libs.config.Configuration at-
tribute), 120

authenticated() (gc3libs.backends.LRMS static
method), 100

AuthError, 132
aux_files() (gc3libs.application.codeml.CodemlApplication

static method), 96
AuxiliaryCommandError, 132

B
backup() (in module gc3libs.utils), 172
basename_sans() (in module gc3libs.utils), 173
BatchSystem (class in gc3libs.backends.batch), 102
BgEngine (class in gc3libs.core), 122
bsub() (gc3libs.Application method), 87

C
cache_for() (in module gc3libs.utils), 173
cancel_job() (gc3libs.backends.batch.BatchSystem

method), 102
cancel_job() (gc3libs.backends.LRMS method), 101
cancel_job() (gc3libs.backends.noop.NoOpLrms

method), 105
cancel_job() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 109
cat() (in module gc3libs.utils), 174
changed (gc3libs.workflow.RetryableTask attribute),

186
changed (gc3libs.workflow.TaskCollection attribute),

190
check_file_access() (in module gc3libs.utils),

174
ChunkedParameterSweep (class in

gc3libs.workflow), 185
close() (gc3libs.backends.batch.BatchSystem

method), 102
close() (gc3libs.backends.LRMS method), 101
close() (gc3libs.backends.noop.NoOpLrms method),

105

205

gc3pie Documentation, Release 2.6.8

close() (gc3libs.backends.shellcmd.ShellcmdLrms
method), 109

close() (gc3libs.core.BgEngine method), 122
close() (gc3libs.core.Core method), 124
close() (gc3libs.core.Engine method), 127
cmdline() (gc3libs.Application method), 87
CodemlApplication (class in

gc3libs.application.codeml), 95
Command-line, 199
Command-line option, 199
compatible_resources() (gc3libs.Application

method), 87
compute_nr_of_slots() (in module

gc3libs.backends.sge), 106
ComputeTargetVals (class in

gc3libs.optimizer.drivers), 139
CONFIG_FILE_LOCATIONS (in module

gc3libs.defaults), 131
Configuration (class in gc3libs.config), 119
ConfigurationError, 132
ConfigurationFileError, 132
configure_logger() (in module gc3libs), 94
construct_from_cfg_dict()

(gc3libs.config.Configuration method), 120
copy() (gc3libs.utils.Struct method), 172
CopyError, 132
Core, 199
Core (class in gc3libs.core), 124
count_jobs() (in module gc3libs.backends.pbs), 106
count_jobs() (in module gc3libs.backends.sge), 107
count_jobs() (in module gc3libs.backends.slurm),

111
count_running_tasks()

(gc3libs.backends.shellcmd.ShellcmdLrms
method), 109

count_used_cores()
(gc3libs.backends.shellcmd.ShellcmdLrms
method), 109

count_used_memory()
(gc3libs.backends.shellcmd.ShellcmdLrms
method), 109

counts() (gc3libs.core.BgEngine method), 122
counts() (gc3libs.core.Engine method), 127
CPU Time, 199
create_core() (in module gc3libs), 94
create_engine() (in module gc3libs), 94
created() (gc3libs.cmdline.SessionBasedDaemon

method), 114

D
DaemonClient (class in gc3libs.cmdline), 112
DataStagingError, 132
de_opt() (gc3libs.optimizer.drivers.SequentialDriver

method), 141

deleted() (gc3libs.cmdline.SessionBasedDaemon
method), 114

DependentTaskCollection (class in
gc3libs.workflow), 185

deploy_configuration_file() (in module
gc3libs.utils), 174

destroy() (gc3libs.session.Session method), 160
detach() (gc3libs.Task method), 92
detach() (gc3libs.workflow.RetryableTask method),

186
detach() (gc3libs.workflow.TaskCollection method),

190
DetachedFromControllerError, 132
DifferentialEvolutionAlgorithm (class in

gc3libs.optimizer.dif_evolution), 137
dirname() (in module gc3libs.utils), 175
draw_population() (in module gc3libs.optimizer),

136
DuplicateEntryError, 132
Duration (class in gc3libs.quantity), 153

E
Engine (class in gc3libs.core), 126
Enum (class in gc3libs.utils), 169
Error, 132
error_ignored() (in module gc3libs), 95
EvolutionaryAlgorithm (class in

gc3libs.optimizer), 135
evolve() (gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm

method), 138
evolve() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 135
evolve_fn() (gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm

static method), 138
example_cfg_dict() (in module

gc3libs.testing.helpers), 164
exitcode (gc3libs.Run attribute), 89
expansions() (gc3libs.template.Template method),

162
expansions() (in module gc3libs.template), 163
ExponentialBackoff (class in gc3libs.utils), 170

F
FatalError, 132
fetch_output() (gc3libs.core.BgEngine method),

122
fetch_output() (gc3libs.core.Core method), 124
fetch_output() (gc3libs.core.Engine method), 127
fetch_output() (gc3libs.Task method), 92
fetch_output() (gc3libs.workflow.RetryableTask

method), 187
fetch_output() (gc3libs.workflow.TaskCollection

method), 190

206 Index

gc3pie Documentation, Release 2.6.8

fetch_output_error() (gc3libs.Application
method), 87

fgrep() (in module gc3libs.utils), 175
FilePoller (class in gc3libs.poller), 151
FilesystemStore (class in gc3libs.persistence), 142
FilesystemStore (class in

gc3libs.persistence.filesystem), 146
filter() (gc3libs.core.MatchMaker method), 129
find_task_by_id() (gc3libs.core.BgEngine

method), 122
find_task_by_id() (gc3libs.core.Engine method),

127
first() (in module gc3libs.utils), 175
flush() (gc3libs.session.Session method), 161
forget() (gc3libs.session.Session method), 161
format_arg_value() (in module gc3libs.debug),

130
format_message() (gc3libs.utils.History method),

170
free() (gc3libs.backends.batch.BatchSystem method),

102
free() (gc3libs.backends.LRMS method), 101
free() (gc3libs.backends.noop.NoOpLrms method),

105
free() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 109
free() (gc3libs.core.BgEngine method), 122
free() (gc3libs.core.Core method), 124
free() (gc3libs.core.Engine method), 127
free() (gc3libs.Task method), 92
free() (gc3libs.workflow.RetryableTask method), 187
free() (gc3libs.workflow.TaskCollection method), 190
from_encoded_bytes() (in module gc3libs.utils),

175
from_filesystem_bytes() (in module

gc3libs.utils), 175
from_template() (in module gc3libs.utils), 176
from_terminal_bytes() (in module gc3libs.utils),

176

G
GamessApplication (class in

gc3libs.application.gamess), 96
GamessAppPotApplication (class in

gc3libs.application.gamess), 96
gc3libs (module), 83
gc3libs.application (module), 95
gc3libs.application.apppot (module), 95
gc3libs.application.codeml (module), 95
gc3libs.application.demo (module), 96
gc3libs.application.gamess (module), 96
gc3libs.application.rosetta (module), 97
gc3libs.application.turbomole (module), 98
gc3libs.authentication (module), 99

gc3libs.authentication.ec2 (module), 100
gc3libs.authentication.openstack (mod-

ule), 100
gc3libs.authentication.ssh (module), 100
gc3libs.backends (module), 100
gc3libs.backends.batch (module), 102
gc3libs.backends.lsf (module), 104
gc3libs.backends.noop (module), 104
gc3libs.backends.pbs (module), 106
gc3libs.backends.sge (module), 106
gc3libs.backends.shellcmd (module), 107
gc3libs.backends.slurm (module), 110
gc3libs.backends.transport (module), 111
gc3libs.backends.vmpool (module), 111
gc3libs.cmdline (module), 112
gc3libs.config (module), 119
gc3libs.core (module), 122
gc3libs.debug (module), 130
gc3libs.defaults (module), 131
gc3libs.events (module), 131
gc3libs.exceptions (module), 131
gc3libs.optimizer (module), 135
gc3libs.optimizer.dif_evolution (module),

137
gc3libs.optimizer.drivers (module), 139
gc3libs.optimizer.extra (module), 141
gc3libs.persistence (module), 141
gc3libs.persistence.accessors (module),

143
gc3libs.persistence.filesystem (module),

146
gc3libs.persistence.idfactory (module),

147
gc3libs.persistence.serialization (mod-

ule), 148
gc3libs.persistence.sql (module), 148
gc3libs.persistence.store (module), 149
gc3libs.poller (module), 151
gc3libs.quantity (module), 153
gc3libs.session (module), 159
gc3libs.template (module), 162
gc3libs.testing (module), 164
gc3libs.testing.helpers (module), 164
gc3libs.url (module), 165
gc3libs.utils (module), 169
gc3libs.workflow (module), 185
gc3utils (module), 191
gc3utils.frontend (module), 191
generic_filename_mapping() (in module

gc3libs.backends.batch), 103
GET (in module gc3libs.persistence.accessors), 143
get() (gc3libs.authentication.Auth method), 99
get_all_vms() (gc3libs.backends.vmpool.VMPool

method), 112

Index 207

gc3pie Documentation, Release 2.6.8

get_available_physical_memory() (in mod-
ule gc3libs.utils), 176

get_backend() (gc3libs.core.BgEngine method), 122
get_epilogue_script()

(gc3libs.backends.batch.BatchSystem method),
102

get_jobid_from_submit_output()
(gc3libs.backends.batch.BatchSystem method),
102

get_linux_memcg_limit() (in module
gc3libs.utils), 176

get_max_real_memory() (in module gc3libs.utils),
176

get_new_events() (gc3libs.poller.FilePoller
method), 151

get_new_events() (gc3libs.poller.INotifyPoller
method), 152

get_new_events() (gc3libs.poller.Poller method),
152

get_new_events() (gc3libs.poller.SwiftPoller
method), 153

get_num_processors() (in module gc3libs.utils),
176

get_prologue_script()
(gc3libs.backends.batch.BatchSystem method),
102

get_resource_status() (gc3libs.backends.LRMS
method), 101

get_resource_status()
(gc3libs.backends.lsf.LsfLrms method), 104

get_resource_status()
(gc3libs.backends.noop.NoOpLrms method),
105

get_resource_status()
(gc3libs.backends.pbs.PbsLrms method),
106

get_resource_status()
(gc3libs.backends.sge.SgeLrms method),
106

get_resource_status()
(gc3libs.backends.shellcmd.ShellcmdLrms
method), 109

get_resource_status()
(gc3libs.backends.slurm.SlurmLrms method),
111

get_resources() (gc3libs.core.BgEngine method),
122

get_resources() (gc3libs.core.Core method), 125
get_resources() (gc3libs.core.Engine method), 127
get_results() (gc3libs.backends.batch.BatchSystem

method), 103
get_results() (gc3libs.backends.LRMS method),

101
get_results() (gc3libs.backends.noop.NoOpLrms

method), 105
get_results() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 109
get_scheduler_and_lock_factory() (in mod-

ule gc3libs.utils), 177
get_vm() (gc3libs.backends.vmpool.VMPool method),

112
getattr_nested() (in module gc3libs.utils), 177
GetAttributeValue (class in

gc3libs.persistence.accessors), 143
GetItemValue (class in

gc3libs.persistence.accessors), 144
GetOnly (class in gc3libs.persistence.accessors), 145
GetValue (class in gc3libs.persistence.accessors), 145
grep() (in module gc3libs.utils), 177

H
has_converged() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 135
has_running_tasks()

(gc3libs.backends.shellcmd.ShellcmdLrms
method), 110

hello() (gc3libs.cmdline.SessionBasedDaemon.Server
method), 114

help() (gc3libs.cmdline.SessionBasedDaemon
method), 115

History (class in gc3libs.utils), 170

I
Id (class in gc3libs.persistence.idfactory), 147
IdFactory (class in gc3libs.persistence), 142
IdFactory (class in gc3libs.persistence.idfactory), 147
ifelse() (in module gc3libs.utils), 177
in_state() (gc3libs.Run method), 89
init_counts_for() (gc3libs.core.Engine method),

127
INotifyPoller (class in gc3libs.poller), 151
InputFileError, 132
InstanceNotFound, 111
InternalError, 132
IntId (class in gc3libs.persistence.sql), 148
InvalidArgument, 132
invalidate_cache()

(gc3libs.persistence.filesystem.FilesystemStore
method), 147

invalidate_cache()
(gc3libs.persistence.FilesystemStore method),
143

invalidate_cache()
(gc3libs.persistence.sql.SqlStore method),
149

invalidate_cache()
(gc3libs.persistence.store.Store method),
150

208 Index

gc3pie Documentation, Release 2.6.8

InvalidOperation, 133
InvalidResourceName, 133
InvalidType, 133
InvalidUsage, 133
InvalidValue, 133
irange() (in module gc3libs.utils), 177
is_class_private_name() (in module

gc3libs.debug), 130
is_classmethod() (in module gc3libs.debug), 130
iter_tasks() (gc3libs.core.BgEngine method), 123
iter_tasks() (gc3libs.core.Engine method), 128
iter_tasks() (gc3libs.workflow.TaskCollection

method), 190
iter_workflow() (gc3libs.session.Session method),

161
iter_workflow() (gc3libs.workflow.TaskCollection

method), 190

J
Job, 199
JobIdFactory (class in gc3libs.persistence), 142
JobIdFactory (class in gc3libs.persistence.idfactory),

147
JOBS_DIR (in module gc3libs.defaults), 131

K
keys() (gc3libs.utils.Struct method), 172
kill() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 113
kill() (gc3libs.core.BgEngine method), 123
kill() (gc3libs.core.Core method), 125
kill() (gc3libs.core.Engine method), 128
kill() (gc3libs.Task method), 92
kill() (gc3libs.workflow.ParallelTaskCollection

method), 186
kill() (gc3libs.workflow.RetryableTask method), 187
kill() (gc3libs.workflow.SequentialTaskCollection

method), 187
kill() (gc3libs.workflow.TaskCollection method), 190

L
last() (gc3libs.utils.History method), 170
list() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 113
list() (gc3libs.persistence.filesystem.FilesystemStore

method), 147
list() (gc3libs.persistence.FilesystemStore method),

143
list() (gc3libs.persistence.sql.SqlStore method), 149
list() (gc3libs.persistence.store.Store method), 150
list_details() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 113
list_ids() (gc3libs.session.Session method), 161
list_names() (gc3libs.session.Session method), 161

load() (gc3libs.backends.vmpool.VMPool method),
112

load() (gc3libs.config.Configuration method), 121
load() (gc3libs.persistence.filesystem.FilesystemStore

method), 147
load() (gc3libs.persistence.FilesystemStore method),

143
load() (gc3libs.persistence.sql.SqlStore method), 149
load() (gc3libs.persistence.store.Store method), 150
load() (gc3libs.session.Session method), 161
load_many() (gc3libs.session.Session method), 161
LoadError, 133
lock() (in module gc3libs.utils), 178
log_stats() (in module gc3libs.optimizer.extra), 141
lookup() (in module gc3libs.utils), 178
LRMS (class in gc3libs.backends), 100
LRMSError, 133
LRMSSkipSubmissionToNextIteration, 133
LRMSSubmitError, 133
LSF_CACHE_TIME (in module gc3libs.defaults), 131
LsfLrms (class in gc3libs.backends.lsf), 104

M
main() (in module gc3utils.frontend), 191
make_auth() (gc3libs.config.Configuration method),

121
make_filesystemstore() (in module

gc3libs.persistence.filesystem), 147
make_poller() (in module gc3libs.poller), 153
make_resources() (gc3libs.config.Configuration

method), 121
make_sqlstore() (in module

gc3libs.persistence.sql), 149
make_store() (in module gc3libs.persistence), 142
make_store() (in module gc3libs.persistence.store),

150
manage() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 114
MatchMaker (class in gc3libs.core), 129
MaximumCapacityReached, 133
Memory (class in gc3libs.quantity), 156
merge_file() (gc3libs.config.Configuration method),

121
method_name() (in module gc3libs.debug), 130
mkdir() (in module gc3libs.utils), 178
mkdir_with_backup() (in module gc3libs.utils),

178
modified() (gc3libs.cmdline.SessionBasedDaemon

method), 115
move_recursively() (in module gc3libs.utils), 179
movefile() (in module gc3libs.utils), 179
MOVER_SCRIPT (gc3libs.backends.shellcmd.ShellcmdLrms

attribute), 108
movetree() (in module gc3libs.utils), 179

Index 209

gc3pie Documentation, Release 2.6.8

N
name() (in module gc3libs.debug), 130
NeverUsedException, 170
new() (gc3libs.persistence.IdFactory method), 142
new() (gc3libs.persistence.idfactory.IdFactory method),

147
new() (gc3libs.Task method), 92
new_task() (gc3libs.workflow.ChunkedParameterSweep

method), 185
new_tasks() (gc3libs.cmdline.SessionBasedScript

method), 116
next() (gc3libs.optimizer.drivers.ParallelDriver

method), 140
next() (gc3libs.workflow.SequentialTaskCollection

method), 187
next() (gc3libs.workflow.StagedTaskCollection

method), 189
NoAccessibleConfigurationFile, 133
NoConfigurationFile, 133
NoneAuth (class in gc3libs.authentication), 99
nonnegative_int() (in module gc3libs.cmdline),

117
NoOpLrms (class in gc3libs.backends.noop), 104
NoResources, 133
NoValidConfigurationFile, 133

O
occurs() (in module gc3libs.utils), 179
ONLY() (gc3libs.persistence.accessors.GetValue

method), 146
OutputNotAvailableError, 133

P
ParallelDriver (class in gc3libs.optimizer.drivers),

139
ParallelTaskCollection (class in

gc3libs.workflow), 186
parse_args() (gc3libs.cmdline.SessionBasedDaemon

method), 115
parse_linux_proc_limits() (in module

gc3libs.utils), 179
parse_qhost_f() (in module gc3libs.backends.sge),

107
parse_qstat_f() (in module gc3libs.backends.sge),

107
parse_range() (in module gc3libs.utils), 179
PbsLrms (class in gc3libs.backends.pbs), 106
peek() (gc3libs.backends.batch.BatchSystem method),

103
peek() (gc3libs.backends.LRMS method), 101
peek() (gc3libs.backends.noop.NoOpLrms method),

105
peek() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 110

peek() (gc3libs.core.BgEngine method), 123
peek() (gc3libs.core.Core method), 125
peek() (gc3libs.core.Engine method), 128
peek() (gc3libs.Task method), 92
peek() (gc3libs.workflow.RetryableTask method), 187
peek() (gc3libs.workflow.TaskCollection method), 190
Persistable (class in gc3libs.persistence), 142
Persistable (class in

gc3libs.persistence.serialization), 148
Persistent, 199
plot_population (class in gc3libs.optimizer.extra),

141
PlusInfinity (class in gc3libs.utils), 170
Poller (class in gc3libs.poller), 152
populate() (in module gc3libs.optimizer), 136
positive_int() (in module gc3libs.cmdline), 118
post_fork() (gc3libs.persistence.store.Store

method), 150
pre_fork() (gc3libs.persistence.sql.SqlStore method),

149
pre_fork() (gc3libs.persistence.store.Store method),

150
pre_run() (gc3libs.cmdline.DaemonClient method),

112
pre_run() (gc3libs.cmdline.SessionBasedScript

method), 116
prettyprint() (in module gc3libs.utils), 180
print_stats() (in module gc3libs.optimizer.extra),

141
print_summary_table()

(gc3libs.cmdline.SessionBasedScript method),
116

print_tasks_table()
(gc3libs.cmdline.SessionBasedScript method),
116

PRIVATE_DIR (gc3libs.backends.shellcmd.ShellcmdLrms
attribute), 108

progress() (gc3libs.core.BgEngine method), 123
progress() (gc3libs.core.Engine method), 128
progress() (gc3libs.Task method), 92
progress() (gc3libs.workflow.ParallelTaskCollection

method), 186
progress() (gc3libs.workflow.SequentialTaskCollection

method), 188
progressive_number() (in module gc3libs.utils),

180
Python Enhancement Proposals

PEP 8, 196

Q
qsub_pbs() (gc3libs.Application method), 87
qsub_sge() (gc3libs.Application method), 87
Quantity (class in gc3libs.quantity), 158

210 Index

gc3pie Documentation, Release 2.6.8

R
random() (in module gc3libs.backends.noop), 106
rank() (gc3libs.core.MatchMaker method), 129
rank_resources() (gc3libs.Application method), 88
RCDIR (in module gc3libs.defaults), 131
read_contents() (in module gc3libs.utils), 181
RecoverableAuthError, 133
RecoverableDataStagingError, 133
RecoverableError, 134
RecoverableTransportError, 134
recurse (gc3libs.poller.FilePoller attribute), 151
recurse (gc3libs.poller.INotifyPoller attribute), 152
redo() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 114
redo() (gc3libs.core.Engine method), 128
redo() (gc3libs.Task method), 93
redo() (gc3libs.workflow.ParallelTaskCollection

method), 186
redo() (gc3libs.workflow.SequentialTaskCollection

method), 188
register() (in module gc3libs.persistence.store), 150
remove() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 114
remove() (gc3libs.core.BgEngine method), 123
remove() (gc3libs.core.Core method), 125
remove() (gc3libs.core.Engine method), 128
remove() (gc3libs.persistence.filesystem.FilesystemStore

method), 147
remove() (gc3libs.persistence.FilesystemStore

method), 143
remove() (gc3libs.persistence.sql.SqlStore method),

149
remove() (gc3libs.persistence.store.Store method), 150
remove() (gc3libs.session.Session method), 161
remove() (gc3libs.workflow.TaskCollection method),

190
remove() (in module gc3libs.utils), 182
remove_vm() (gc3libs.backends.vmpool.VMPool

method), 112
replace() (gc3libs.persistence.filesystem.FilesystemStore

method), 147
replace() (gc3libs.persistence.FilesystemStore

method), 143
replace() (gc3libs.persistence.sql.SqlStore method),

149
replace() (gc3libs.persistence.store.Store method),

150
reserve() (gc3libs.persistence.IdFactory method),

142
reserve() (gc3libs.persistence.idfactory.IdFactory

method), 147
Resource, 199
RESOURCE_DIR (gc3libs.backends.shellcmd.ShellcmdLrms

attribute), 108

ResourceNotReady, 134
resources (gc3libs.core.Engine attribute), 128
retry() (gc3libs.workflow.RetryableTask method), 187
RetryableTask (class in gc3libs.workflow), 186
returncode (gc3libs.Run attribute), 89
RosettaApplication (class in

gc3libs.application.rosetta), 97
RosettaDockingApplication (class in

gc3libs.application.rosetta), 97
Run (class in gc3libs), 88
Run.Arch (class in gc3libs), 89
running() (gc3libs.Task method), 93

S
safe_repr() (in module gc3libs.utils), 182
same_docstring_as() (in module gc3libs.utils),

182
samefile() (in module gc3libs.utils), 182
save() (gc3libs.backends.vmpool.VMPool method),

112
save() (gc3libs.persistence.filesystem.FilesystemStore

method), 147
save() (gc3libs.persistence.FilesystemStore method),

143
save() (gc3libs.persistence.sql.SqlStore method), 149
save() (gc3libs.persistence.store.Store method), 150
save() (gc3libs.session.Session method), 161
save_all() (gc3libs.session.Session method), 161
sbatch() (gc3libs.Application method), 88
Scheduler (class in gc3libs.core), 129
scheduler (class in gc3libs.core), 130
select() (gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm

method), 138
select() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 136
select_resource() (gc3libs.core.BgEngine

method), 123
select_resource() (gc3libs.core.Core method),

125
select_resource() (gc3libs.core.Engine method),

128
SequentialDriver (class in

gc3libs.optimizer.drivers), 140
SequentialTaskCollection (class in

gc3libs.workflow), 187
Session, 199
Session (class in gc3libs.session), 159
SessionBasedDaemon (class in gc3libs.cmdline),

113
SessionBasedDaemon.Commands (class in

gc3libs.cmdline), 113
SessionBasedDaemon.Server (class in

gc3libs.cmdline), 114

Index 211

gc3pie Documentation, Release 2.6.8

SessionBasedScript (class in gc3libs.cmdline),
115

set_end_timestamp() (gc3libs.session.Session
method), 162

set_start_timestamp() (gc3libs.session.Session
method), 162

setup() (gc3libs.cmdline.SessionBasedDaemon
method), 115

setup() (gc3libs.cmdline.SessionBasedScript method),
117

setup_args() (gc3libs.cmdline.DaemonClient
method), 113

setup_args() (gc3libs.cmdline.SessionBasedDaemon
method), 115

setup_args() (gc3libs.cmdline.SessionBasedScript
method), 117

setup_options() (gc3libs.cmdline.DaemonClient
method), 113

setup_options() (gc3libs.cmdline.SessionBasedDaemon
method), 115

SgeLrms (class in gc3libs.backends.sge), 106
sh_quote_safe() (in module gc3libs.utils), 182
sh_quote_safe_cmdline() (in module

gc3libs.utils), 182
sh_quote_unsafe() (in module gc3libs.utils), 182
sh_quote_unsafe_cmdline() (in module

gc3libs.utils), 182
ShellcmdLrms (class in gc3libs.backends.shellcmd),

107
shellexit_to_returncode() (gc3libs.Run static

method), 90
show() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 114
shutdown() (gc3libs.cmdline.SessionBasedDaemon

method), 115
signal (gc3libs.Run attribute), 90
SimpleParallelTaskCollection (class in

gc3libs.testing.helpers), 164
SimpleSequentialTaskCollection (class in

gc3libs.testing.helpers), 164
SlurmLrms (class in gc3libs.backends.slurm), 110
SPOOLDIR (in module gc3libs.defaults), 131
SpoolDirError, 134
SqlStore (class in gc3libs.persistence.sql), 148
Square (class in gc3libs.application.demo), 96
stage() (gc3libs.workflow.SequentialTaskCollection

method), 188
StagedTaskCollection (class in

gc3libs.workflow), 188
start() (gc3libs.cmdline.SessionBasedDaemon.Server

method), 114
start() (gc3libs.core.BgEngine method), 123
State, 199
state (gc3libs.Run attribute), 90

stats() (gc3libs.cmdline.SessionBasedDaemon.Commands
method), 114

stats() (gc3libs.core.BgEngine method), 123
stats() (gc3libs.core.Engine method), 129
stats() (gc3libs.workflow.TaskCollection method),

190
STDERR, 199
STDOUT, 199
stop() (gc3libs.cmdline.SessionBasedDaemon.Server

method), 114
stop() (gc3libs.core.BgEngine method), 123
StopOnError (class in gc3libs.workflow), 189
stopped() (gc3libs.Task method), 93
Store (class in gc3libs.persistence.store), 149
string_to_boolean() (in module gc3libs.utils),

183
Struct (class in gc3libs.utils), 171
submit() (gc3libs.core.BgEngine method), 123
submit() (gc3libs.core.Core method), 125
submit() (gc3libs.core.Engine method), 129
submit() (gc3libs.Task method), 93
submit() (gc3libs.workflow.DependentTaskCollection

method), 186
submit() (gc3libs.workflow.ParallelTaskCollection

method), 186
submit() (gc3libs.workflow.RetryableTask method),

187
submit() (gc3libs.workflow.SequentialTaskCollection

method), 188
submit() (gc3libs.workflow.TaskCollection method),

190
submit_error() (gc3libs.Application method), 88
submit_job() (gc3libs.backends.batch.BatchSystem

method), 103
submit_job() (gc3libs.backends.LRMS method), 101
submit_job() (gc3libs.backends.noop.NoOpLrms

method), 105
submit_job() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 110
submitted() (gc3libs.Task method), 93
substitute() (gc3libs.template.Template method),

162
SuccessfulApp (class in gc3libs.testing.helpers), 164
SwiftPoller (class in gc3libs.poller), 152

T
t_store (gc3libs.persistence.sql.SqlStore attribute),

149
Task (class in gc3libs), 91
TaskCollection (class in gc3libs.workflow), 189
TaskError, 134
tempdir() (in module gc3libs.utils), 183
Template (class in gc3libs.template), 162

212 Index

gc3pie Documentation, Release 2.6.8

temporary_config() (in module
gc3libs.testing.helpers), 164

temporary_config_file() (in module
gc3libs.testing.helpers), 164

TemporarySession (class in gc3libs.session), 162
terminate() (gc3libs.cmdline.SessionBasedDaemon

method), 115
terminated() (gc3libs.application.codeml.CodemlApplication

method), 96
terminated() (gc3libs.application.gamess.GamessApplication

method), 97
terminated() (gc3libs.application.rosetta.RosettaApplication

method), 97
terminated() (gc3libs.application.turbomole.TurbomoleApplication

method), 98
terminated() (gc3libs.application.turbomole.TurbomoleDefineApplication

method), 98
terminated() (gc3libs.Task method), 93
terminated() (gc3libs.testing.helpers.SuccessfulApp

method), 164
terminated() (gc3libs.testing.helpers.UnsuccessfulApp

method), 164
terminated() (gc3libs.workflow.ParallelTaskCollection

method), 186
terminated() (gc3libs.workflow.TaskCollection

method), 190
terminating() (gc3libs.Task method), 93
test_resource() (in module

gc3libs.testing.helpers), 165
TIMEFMT (gc3libs.backends.shellcmd.ShellcmdLrms at-

tribute), 108
TIMEFMT_CONV (gc3libs.backends.shellcmd.ShellcmdLrms

attribute), 108
to_bytes() (in module gc3libs.utils), 183
to_str() (in module gc3libs.utils), 184
to_timedelta() (gc3libs.quantity.Duration method),

156
touch() (in module gc3libs.utils), 184
trace() (in module gc3libs.debug), 130
trace_class() (in module gc3libs.debug), 130
trace_instancemethod() (in module

gc3libs.debug), 131
trace_module() (in module gc3libs.debug), 131
TransportError, 134
trigger_after_progress()

(gc3libs.core.BgEngine method), 123
trigger_before_progress()

(gc3libs.core.BgEngine method), 123
TurbomoleApplication (class in

gc3libs.application.turbomole), 98
TurbomoleDefineApplication (class in

gc3libs.application.turbomole), 98

U
UnexpectedJobState, 134
UnexpectedStateError, 134
unknown() (gc3libs.Task method), 93
UnknownJob, 134
UnknownJobState, 134
unlock() (in module gc3libs.utils), 184
unmanage() (gc3libs.cmdline.SessionBasedDaemon.Commands

method), 114
UnrecoverableAuthError, 134
UnrecoverableDataStagingError, 134
UnrecoverableError, 134
UnrecoverableTransportError, 134
UnsuccessfulApp (class in gc3libs.testing.helpers),

164
update() (gc3libs.backends.vmpool.VMPool method),

112
update_job_state()

(gc3libs.backends.batch.BatchSystem method),
103

update_job_state() (gc3libs.backends.LRMS
method), 102

update_job_state()
(gc3libs.backends.noop.NoOpLrms method),
105

update_job_state()
(gc3libs.backends.shellcmd.ShellcmdLrms
method), 110

update_job_state() (gc3libs.core.BgEngine
method), 123

update_job_state() (gc3libs.core.Core method),
126

update_job_state() (gc3libs.core.Engine
method), 129

update_job_state_error() (gc3libs.Application
method), 88

update_opt_state()
(gc3libs.optimizer.EvolutionaryAlgorithm
method), 136

update_parameter_in_file() (in module
gc3libs.utils), 184

update_resources() (gc3libs.core.Core method),
126

update_state() (gc3libs.Task method), 93
update_state() (gc3libs.workflow.ChunkedParameterSweep

method), 185
update_state() (gc3libs.workflow.ParallelTaskCollection

method), 186
update_state() (gc3libs.workflow.RetryableTask

method), 187
update_state() (gc3libs.workflow.SequentialTaskCollection

method), 188
update_state() (gc3libs.workflow.TaskCollection

method), 191

Index 213

gc3pie Documentation, Release 2.6.8

Url (class in gc3libs.url), 165
UrlKeyDict (class in gc3libs.url), 167
UrlValueDict (class in gc3libs.url), 168

V
validate_data() (gc3libs.backends.batch.BatchSystem

method), 103
validate_data() (gc3libs.backends.LRMS method),

102
validate_data() (gc3libs.backends.noop.NoOpLrms

method), 105
validate_data() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 110
VM_OS_OVERHEAD (in module gc3libs.defaults), 131
VMPool (class in gc3libs.backends.vmpool), 111

W
wait() (gc3libs.Task method), 94
wait() (gc3libs.utils.ExponentialBackoff method), 170
Walltime, 200
WindowsError (in module gc3libs.utils), 172
WRAPPER_OUTPUT_FILENAME

(gc3libs.backends.shellcmd.ShellcmdLrms
attribute), 108

WRAPPER_PID (gc3libs.backends.shellcmd.ShellcmdLrms
attribute), 108

WRAPPER_SCRIPT (gc3libs.backends.shellcmd.ShellcmdLrms
attribute), 109

write_contents() (in module gc3libs.utils), 184

Y
YieldAtNext (class in gc3libs.utils), 172

214 Index

	Introduction
	Table of Contents
	User Documentation
	Programmer Documentation
	Contributors documentation
	Publications
	List of contributors to GC3Pie
	Glossary

	Indices and tables
	Python Module Index
	Index

