
gc3pie Documentation
Release 1.0rc4

Sergio Maffioletti, Mark Monroe, Riccardo Murri, Mike Packard

August 23, 2015

Contents

1 Introduction 1
1.1 Outline of the contents . 1

2 Installation of GC3Utils 3
2.1 Installation . 3
2.2 Upgrade . 5
2.3 HTML Documentation . 5

3 Programming overview 7
3.1 Execution model of GC3Libs applications . 8

4 GC3Libs modules 11
4.1 gc3libs . 11
4.2 gc3libs.core . 11
4.3 gc3libs.Default . 11
4.4 gc3libs.Exceptions . 12
4.5 gc3libs.persistence . 12
4.6 gc3libs.application . 12
4.7 gc3libs.application.gamess . 12
4.8 gc3libs.application.rosetta . 12
4.9 gc3libs.authentication . 12
4.10 gc3libs.authentication.ssh . 12
4.11 gc3libs.authentication.grid . 12
4.12 gc3libs.backends . 12
4.13 gc3libs.backends.arc . 12
4.14 gc3libs.backends.sge . 12
4.15 gc3libs.backends.transport . 12
4.16 gc3libs.utils . 12
4.17 gc3libs.Resource . 12
4.18 gc3libs.scheduler . 12
4.19 gc3libs.InformationContainer . 12

5 GC3Utils modules 13
5.1 gc3utils . 13
5.2 gc3utils.gcmd . 13
5.3 gc3utils.commands . 13

6 Indices and tables 15

Python Module Index 17

i

ii

CHAPTER 1

Introduction

GC3Libs is a python package for controlling the life-cycle of a Grid or batch computational job.

GC3Libs provides services for submitting computational jobs to Grids and batch systems, controlling their execu-
tion, persisting job information, and retrieving the final output.

GC3Libs takes an application-oriented approach to batch computing. A generic Application class provides the
basic operations for controlling remote computations, but different Application subclasses can expose adapted
interfaces, focusing on the most relevant aspects of the application being represented.

This document is the technical reference for the GC3Libs programming model, aimed at programmers who want
to use GC3Libs to implement computational workflows in Python.

1.1 Outline of the contents

The Programming overview section presents the main concepts behind GC3Libs programming.

The GC3Libs modules section is a comprehensive list of all the modules, classes and functions comprising
GC3Libs; its content is automatically generated from docstrings in the source code.

1

gc3pie Documentation, Release 1.0rc4

2 Chapter 1. Introduction

CHAPTER 2

Installation of GC3Utils

Author Riccardo Murri <riccardo.murri@gmail.com>

Date 2010-10-06

Revision $Revision$

2.1 Installation

These instructions show how to install GC3Pie from the GC3 source repository into a separate python environment
(called virtualenv). Installation into a virtualenv has two distinct advantages:

• All code is confined in a single directory, and can thus be easily replaced/removed.

• Better dependency handling: additional Python packages that GC3Pie depends upon can be installed even
if they conflict with system-level packages.

0. Install software prerequisites:

• On Debian/Ubuntu, install packages: subversion, python-dev, python-profiler and the
C/C++ compiler:

apt-get install subversion python-dev python-profiler gcc g++

• On CentOS5, install packages subversion and python-devel and the C/C++ compiler:

yum install subversion python-devel gcc gcc-c++

• On other Linux distributions, you will need to install:

– the svn command (from the SubVersion VCS)

– Python development headers and libraries (for installing extension libraries written in C/C++)

– the Python package pstats (it’s part of the Python standard library, but sometimes it needs
separate installation)

– a C/C++ compiler (this is usually installed by default).

In order to use the ARC backend (required for SMSCG), you need the NorduGrid/ARC binaries and a
working slcs-init command installed on the same machine where GC3Pie are. You can find instructions
for installing it at:

http://www.smscg.ch/WP/middleware/release_2_0/smscg_ui_Binary_Installation.html

Additional OS-specific installation details can be found at:

http://code.google.com/p/gc3pie/wiki/OSSpecificInstallDetails

3

mailto:riccardo.murri@gmail.com
http://pypi.python.org/pypi/virtualenv/1.5.1
http://subversion.tigris.org/
http://www.smscg.ch/WP/middleware/release_2_0/smscg_ui_Binary_Installation.html
http://code.google.com/p/gc3pie/wiki/OSSpecificInstallDetails

gc3pie Documentation, Release 1.0rc4

1. Choose a directory where the GC3Pie software will be installed; any directory that’s writable by your Linux
account will be ok.

If you are installing system-wide as root, we suggest you install GC3Pie into /opt/gc3pie.

If you are installing as a normal user, we suggest you install GC3Pie into $HOME/gc3pie.

2. If it’s not already installed, get the virtualenv Python package and install it:

wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.5.1.tar.gz
tar -xzf virtualenv-1.5.1.tar.gz && rm virtualenv-1.5.1.tar.gz
cd virtualenv-1.5.1/

If you are installing as `root`, the following command is all you
need:

python setup.py install

If instead you are installing as a normal, unprivileged user,
things get more complicated::

export PYTHONPATH=$HOME/lib64/python:$HOME/lib/python:$PYTHONPATH
export PATH=$PATH:$HOME/bin
mkdir -p $HOME/lib/python
python setup.py install --home $HOME

(You will also need to add the two `export` lines above to the
`$HOME/.bashrc` file -if using the `bash` shell- or to the
`$HOME/.cshrc` file -if using the `tcsh` shell.)

In any case, once `virtualenv`_ has been installed, you can exit
its directory and remove it::

cd ..
rm -rf virtualenv-1.5.1

3. Create a virtualenv to host the gc3pie installation at the directory you chose in Step 1.:

virtualenv $HOME/gc3pie # use '/opt/gc3pie' if installing as root
cd $HOME/gc3pie/
source bin/activate

4. Check-out the gc3pie files in a src/ directory:

svn co http://gc3pie.googlecode.com/svn/branches/1.0/gc3pie src

5. Install the gc3pie in “develop” mode, so any modification pulled from subversion is immediately reflected
in the running environment:

cd src/
env CC=gcc ./setup.py develop
cd .. # back into the `gc3pie` directory

This will place all the GC3Pie command into the gc3pie/bin/ directory.

6. GC3Pie comes with driver scripts to run and manage large families of jobs from a few selected applications.
These scripts are not installed by default because not everyone needs them.

Run the following commands to install the driver scripts for the applications you need:

if you are insterested in GAMESS, do the following
ln -s '../src/gc3apps/gamess/ggamess.py' bin/ggamess

if you are insterested in Rosetta, do the following
ln -s '../src/gc3apps/rosetta/gdocking.py' bin/gdocking
ln -s '../src/gc3apps/rosetta/grosetta.py' bin/grosetta

4 Chapter 2. Installation of GC3Utils

http://pypi.python.org/pypi/virtualenv/1.5.1

gc3pie Documentation, Release 1.0rc4

if you are insterested in Codeml, do the following
ln -s '../src/gc3apps/codeml/gcodeml.py' bin/gcodeml

7. Before you can actually run the GC3Pie, you need to have a working configuration file; the Configura-
tionFile Wiki page <http://code.google.com/p/gc3pie/wiki/ConfigurationFile> provides an explanation of
the syntax to use in configuration files.

An example configuration file, enabling access to the SMSCG infrastructure can be found at:

http://gc3pie.googlecode.com/svn/branches/1.0/gc3pie/gc3libs/etc/gc3pie.conf.smscg

Before you can actually use this file, you will need to insert into it three values, for which we can provide
no default: aai_username, idp, and vo.

aai_username: This is the “username” you are asked for when accessing any SWITCHaai/Shibboleth web
page, e.g., https://gc3-aai01.uzh.ch/secure/

idp: Find this out with the command “slcs-info”: it prints a list of IdP (Identity Provider IDs) followed by
the human-readable name of the associated institution. Pick the one that corresponds to you Univer-
sity. It is always the last two components of the University’s Internet domain name (e.g., “uzh.ch” or
“ethz.ch”).

vo: In order to use SMSCG, you must sign up to a VO (Virtual Organisation). One the words “life”, “earth”,
“atlas” or “crypto” should be here. Find out more at: http://www.smscg.ch/www/user/

2.2 Upgrade

These instructions show how to upgrade the GC3Pie scripts to the latest version found in the GC3 svn repository.

1. cd to the directory containing the GC3Pie virtualenv; assuming it’s named gc3pie as in the above instal-
lation instructions, you can issue the commands:

cd $HOME/gc3pie # use '/opt/gc3pie' if root

2. Activate the virtualenv

source bin/activate

3. Upgrade the gc3pie source and run the setup.py script again:

cd src
svn up
env CC=gcc ./setup.py develop

Note: A major restructuring of the SVN repository took place in r1124 to r1126 (Feb. 15, 2011); if your sources
are older than SVN r1124, these upgrade instructions will not work, and you must reinstall completely. You can
check what version the SVN sources are, by running the svn info command in the src directory: watch out for the
Revision: line.

2.3 HTML Documentation

HTML documentation for the GC3Libs programming interface can be read online at:

http://gc3pie.googlecode.com/svn/branches/1.0/docs/html/index.html

You can also generate a local copy from the sources:

cd $HOME/gc3pie # use '/opt/gc3pie' if root
cd src/docs
make html

Note that you need the Python package Sphinx in order to build the documentation locally.

2.2. Upgrade 5

http://www.smscg.ch
http://gc3pie.googlecode.com/svn/branches/1.0/gc3pie/gc3libs/etc/gc3pie.conf.smscg
http://www.switch.ch/aai
https://gc3-aai01.uzh.ch/secure/
http://www.smscg.ch/www/user/
http://gc3pie.googlecode.com/svn/branches/1.0/docs/html/index.html
http://sphinx.pocoo.org

gc3pie Documentation, Release 1.0rc4

6 Chapter 2. Installation of GC3Utils

CHAPTER 3

Programming overview

GC3Libs takes an application-oriented approach to asynchronous computing. A generic Application class
provides the basic operations for controlling remote computations and fetching a result; client code should derive
specialized sub-classes to deal with a particular application, and to perform any application-specific pre- and
post-processing.

The generic procedure for performing computations with GC3Libs is the following:

1. Client code creates an instance of an Application sub-class.

2. Asynchronous computation is started by submitting the application object; this associates the application
with an actual (possibly remote) computational job.

3. Client code can monitor the state of the computational job; state handlers are called on the application object
as the state changes.

4. When the job is done, the final output is retrieved and a post-processing method is invoked on the application
object.

At this point, results of the computation are available and can be used by the calling program.

The Application class (and its sub-classes) alow client code to control the above process by:

1. Specifying the characteristics (computer program to run, input/output files, memory/CPU/duration require-
ments, etc.) of the corresponding computational job. This is done by passing suitable values to the
Application constructor. See the Application constructor documentation for more info.

2. Providing methods to control the “life-cycle” of the associated computational job: start, check execution
state, stop, retrieve a snapshot of the output files. There are actually two different interfaces for this, detailed
below:

(a) A passive interface: a Core or a Engine object is used to start/stop/monitor jobs associated with the
given application. For instance:

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

start the remote computation
g.submit(a)

periodically monitor job execution
g.update_job_state(a)

retrieve output when the job is done
g.fetch_output(a)

The passive interface gives client code full control over the lifecycle of the job, but cannot support
some use cases (e.g., automatic application re-start).

7

gc3pie Documentation, Release 1.0rc4

As you can see from the above example, the passive interface is implemented by methods in the Core
and Engine classes (they implement the same interface). See those classes documentation for more
details.

(b) An active interface: this requires that the Application object be attached to a Core or Engine
instance:

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

tell application to use the active interface
a.attach(g)

start the remote computation
a.submit()

periodically monitor job execution
a.update_job_state()

retrieve output when the job is done
a.fetch_output()

With the active interface, application objects can support automated restart and similar use-cases.

When an Engine object is used instead of a Core one, the job life-cycle is automatically managed,
providing a fully asynchronous way of executing computations.

The active interface is implemented by the Task class and all its descendants (including
Application).

3. Providing “state transition methods” that are called when a change in the job execution state is detected;
those methods can implement application specific behavior, like restarting the computational job with
changed input if the alloted duration has expired but the computation has not finished. In particular, a
postprocess method is called when the final output of an application is available locally for processing.

The set of “state transition methods” currently implemented by the Application class are: new(),
submitted(), running(), stopped(), terminated() and postprocess(). Each method
is called when the execution state of an application object changes to the corresponding state; see each
method’s documentation for exact information.

In addition, GC3Libs provides collection classes, that expose interfaces 2. and 3. above, allowing one to control a
set of applications as a single whole. Collections can be nested (i.e., a collection can hold a mix of Application
and TaskCollection objects), so that workflows can be implemented by composing collection objects.

Note that the term computational job (or just job, for short) is used here in a quite general sense, to mean any
kind of computation that can happen independently of the main thread of the calling program. GC3Libs cur-
rently provide means to execute a job as a separate process on the same computer, or as a batch job on a remote
computational cluster.

3.1 Execution model of GC3Libs applications

An Application can be regarded as an abstraction of an independent asynchronous computation, i.e., a GC3Libs’
Application behaves much like an independent UNIX process (but it can actually run on a separate remote com-
puter). Indeed, GC3Libs’ Application objects mimic the POSIX process model: Application are started by a parent
process, run independently of it, and need to have their final exit code and output reaped by the calling process.

The following table makes the correspondence between POSIX processes and GC3Libs’ Application objects ex-
plicit.

8 Chapter 3. Programming overview

gc3pie Documentation, Release 1.0rc4

os module function Core function purpose
exec Core.submit start new job
kill(..., SIGTERM) Core.kill terminate executing job
wait(..., WNOHANG) Core.update_job_state get job status

• Core.fetch_output retrieve output

Note:
1. With GC3Libs, it is not possible to send an arbitrary signal to a running job: jobs can only be started and

stopped (killed).

2. Since POSIX processes are always executed on the local machine, there is no equivalent of the GC3Libs
fetch_output.

3.1.1 Application exit codes

POSIX encodes process termination information in the “return code”, which can be parsed through
os.WEXITSTATUS, os.WIFSIGNALED, os.WTERMSIG and relative library calls.

Likewise, GC3Libs provides each Application object with an execution.returncode attribute, which is a valid
POSIX “return code”. Client code can therefore use os.WEXITSTATUS and relatives to inspect it; convenience
attributes execution.signal and execution.exitcode are available for direct access to the parts of the return code.
See Run.returncode() for more information.

However, GC3Libs has to deal with error conditions that are not catered for by the POSIX process model: for
instance, execution of an application may fail because of an error connecting to the remote execution cluster.

To this purpose, GC3Libs encodes information about abnormal job termination using a set of pseudo-signal codes
in a job’s execution.returncode attribute: i.e., if termination of a job is due to some grid/batch system/middleware
error, the job’s os.WIFSIGNALED(app.execution.returncode) will be True and the signal code (as gotten from
os.WTERMSIG(app.execution.returncode)) will be one of those listed in the Run.Signals documentation.

3.1.2 Application execution states

At any given moment, a GC3Libs job is in any one of a set of pre-defined states, listed in the table below.
The job state is always available in the .execution.state instance property of any Application or Task object; see
Run.state() for detailed information.

GC3Libs’
Job state

purpose can change to

NEW Job has not yet been submitted/started (i.e., gsub not
called)

SUBMITTED (by gsub)

SUBMIT-
TED

Job has been sent to execution resource RUNNING, STOPPED

STOPPED Trap state: job needs manual intervention (either user- or
sysadmin-level) to resume normal execution

TERMINATED (by gkill),
SUBMITTED (by miracle)

RUNNING Job is executing on remote resource TERMINATED
TERMI-
NATED

Job execution is finished (correctly or not) and will not be
resumed

None: final state

When an Application object is first created, its .execution.state attribute is assigned the state NEW. After
a successful start (via Core.submit() or similar), it is transitioned to state SUBMITTED. Further transitions to
RUNNING or STOPPED or TERMINATED state, happen completely independently of the creator program: the
Core.update_job_state() call provides updates on the status of a job. (Somewhat like the POSIX wait(..., WNO-
HANG) system call, except that GC3Libs provide explicit RUNNING and STOPPED states, instead of encoding
them into the return value.)

The STOPPED state is a kind of generic “run time error” state: a job can get into the STOPPED state if its
execution is stopped (e.g., a SIGSTOP is sent to the remote process) or delayed indefinitely (e.g., the remote

3.1. Execution model of GC3Libs applications 9

gc3pie Documentation, Release 1.0rc4

batch system puts the job “on hold”). There is no way a job can get out of the STOPPED state automatically: all
transitions from the STOPPED state require manual intervention, either by the submitting user (e.g., cancel the
job), or by the remote systems administrator (e.g., by releasing the hold).

The TERMINATED state is the final state of a job: once a job reaches it, it cannot get back to any other state.
Jobs reach TERMINATED state regardless of their exit code, or even if a system failure occurred during remote
execution; actually, jobs can reach the TERMINATED status even if they didn’t run at all!

A job that is not in the NEW or TERMINATED state is said to be a “live” job.

3.1.3 Computational job specification

One of the purposes of GC3Libs is to provide an abstraction layer that frees client code from dealing with the
details of job execution on a possibly remote cluster. For this to work, it necessary to specify job characteristics
and requirements, so that the GC3Libs scheduler can select an appropriate computational resource for executing
the job.

GC3Libs Application provide a way to describe computational job characteristics (program to run, input and
output files, memory/duration requirements, etc.) loosely patterned after ARC’s xRSL language.

The description of the computational job is done through keyword parameters to the Application constructor,
which see for details. Changes in the job characteristics after an Application object has been constructed are
not currently supported.

10 Chapter 3. Programming overview

http://www.nordugrid.org/documents/xrsl.pdf

CHAPTER 4

GC3Libs modules

4.1 gc3libs

4.2 gc3libs.core

4.3 gc3libs.Default

Warning: This module is deprecated and will be removed in a future release. Do not depend on it.

11

gc3pie Documentation, Release 1.0rc4

4.4 gc3libs.Exceptions

4.5 gc3libs.persistence

4.6 gc3libs.application

4.7 gc3libs.application.gamess

4.8 gc3libs.application.rosetta

4.9 gc3libs.authentication

4.10 gc3libs.authentication.ssh

4.11 gc3libs.authentication.grid

4.12 gc3libs.backends

4.13 gc3libs.backends.arc

4.14 gc3libs.backends.sge

4.15 gc3libs.backends.transport

4.16 gc3libs.utils

4.17 gc3libs.Resource

Warning: This module is deprecated and will be removed in a future release. Do not depend on it.

4.18 gc3libs.scheduler

4.19 gc3libs.InformationContainer

Warning: This module is deprecated and will be removed in a future release. Do not depend on it.

12 Chapter 4. GC3Libs modules

CHAPTER 5

GC3Utils modules

5.1 gc3utils

5.2 gc3utils.gcmd

5.3 gc3utils.commands

13

gc3pie Documentation, Release 1.0rc4

14 Chapter 5. GC3Utils modules

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

gc3pie Documentation, Release 1.0rc4

16 Chapter 6. Indices and tables

Python Module Index

g
gc3utils, 13

17

gc3pie Documentation, Release 1.0rc4

18 Python Module Index

Index

G
gc3utils (module), 13

19

	Introduction
	Outline of the contents

	Installation of GC3Utils
	Installation
	Upgrade
	HTML Documentation

	Programming overview
	Execution model of GC3Libs applications

	GC3Libs modules
	gc3libs
	gc3libs.core
	gc3libs.Default
	gc3libs.Exceptions
	gc3libs.persistence
	gc3libs.application
	gc3libs.application.gamess
	gc3libs.application.rosetta
	gc3libs.authentication
	gc3libs.authentication.ssh
	gc3libs.authentication.grid
	gc3libs.backends
	gc3libs.backends.arc
	gc3libs.backends.sge
	gc3libs.backends.transport
	gc3libs.utils
	gc3libs.Resource
	gc3libs.scheduler
	gc3libs.InformationContainer

	GC3Utils modules
	gc3utils
	gc3utils.gcmd
	gc3utils.commands

	Indices and tables
	Python Module Index

