
gc3pie Documentation
Release 2.6.1

Sergio Maffioletti, Antonio Messina, Mark Monroe, Riccardo Murri, Mike Packard

Aug 10, 2021

Contents

1 Introduction 1

2 Table of Contents 3
2.1 User Documentation . 3
2.2 Programmer Documentation . 67
2.3 Contributors documentation . 87
2.4 Publications . 92
2.5 List of contributors to GC3Pie . 94
2.6 Glossary . 94

3 Indices and tables 97

Python Module Index 99

Index 101

i

ii

CHAPTER 1

Introduction

GC3Pie is a Python package for running large job campaigns on diverse batch-oriented execution environments (for
instance: a Sun/Oracle/Open Grid Engine cluster, or the Swiss National Distributed Computing Infrastructure SM-
SCG). It also provides facilities for implementing command-line driver scripts, in the form of Python object classes
whose behavior can be customized by overriding specified object methods.

GC3Pie documentation is divided in three sections:

• User Documentation: info on how to install, configure and run GC3Pie applications.

• Programmer Documentation: info for programmers who want to use the GC3Pie libraries to write their own
scripts and applications.

• Contributors documentation: detailed information on how to contribute to GC3Pie and get your code included
in the main library.

1

http://gridengine.org/blog/2011/11/23/what-now/
http://www.smscg.ch/
http://www.smscg.ch/

gc3pie Documentation, Release 2.6.1

2 Chapter 1. Introduction

CHAPTER 2

Table of Contents

2.1 User Documentation

This section describes how to install and configure GC3Pie, and how to run The GC3Apps software and The GC3Utils
software.

2.1.1 Table of Contents

Installation of GC3Pie

Quick start

We provide an installation script which automatically tries to install GC3pie in your home directory. The quick
installation procedure has only been tested on variants of the GNU/Linux operating system; however, the script should
work on MacOSX as well, provided you follow the preparation steps outlined in the “MacOSX installation” section
below.

To install GC3Pie: (1) download the installation script into a file install.py, then (2) type this at your terminal prompt:

python install.py

The above command creates a directory $HOME/gc3pie and installs the latest release of GC3Pie and all its depen-
dencies into it.

Alternatively, you can also perform both steps at the terminal prompt:

use this if the `wget` command is installed
wget -O install.py https://raw.githubusercontent.com/uzh/gc3pie/master/install.py
python install.py

use this if the `curl` command is installed instead
curl -O https://raw.githubusercontent.com/uzh/gc3pie/master/install.py
python install.py

3

install.html
configuration.html
https://raw.githubusercontent.com/uzh/gc3pie/master/install.py

gc3pie Documentation, Release 2.6.1

Choose either one of the two methods above, depending on whether wget or curl is installed on your system (Linux
systems normally have wget; MacOSX normally uses curl).

In case you have trouble running the installation script, please send an email to gc3pie@googlegroups.com or post a
message on the web forum https://groups.google.com/forum/#!forum/gc3pie. Include the full output of the script in
your email, in order to help us to identify the problem.

Now you can check your GC3Pie installation; follow the on-screen instructions to activate the virtual environment.
Then, just type the command:

gc3utils --help

and you should see the following output appear on your screen:

Usage: gc3utils COMMAND [options]

Command `gc3utils` is a unified front-end to computing resources.
You can get more help on a specific sub-command by typing::

gc3utils COMMAND --help
where command is one of these:

clean
cloud
get
info
kill
resub
select
servers
stat
tail

If you get some errors, do not despair! The GC3Pie users mailing-list is there to help you :-) (You can also post to the
same forum using a web interface at https://groups.google.com/forum/#!forum/gc3pie.)

With the default configuration file, GC3Pie is set up to only run jobs on the computer where it is installed. To run
jobs on remote resources, you need to edit the configuration file; the Configuration file documentation provides an
explanation of the syntax.

Non-standard installation options

The installation script accept a few options that select alternatives to the standard behavior. In order to use these
options, you have to:

1. download the installation script into a file named install.py:

wget https://raw.githubusercontent.com/uzh/gc3pie/master/install.py

2. run the command:

python install.py [options]

replacing the string [options] with the actual options you want to pass to the script. Also, the python
command should be the Python executable that you want to use to run GC3Pie applications.

The accepted options are as follows:

--feature LIST

Install optional features (comma-separated list). Currently defined features are:

4 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com
https://groups.google.com/forum/#!forum/gc3pie
mailto:gc3pie@googlegroups.com
https://groups.google.com/forum/#!forum/gc3pie
http://gc3pie.readthedocs.io/en/latest/users/configuration.html

gc3pie Documentation, Release 2.6.1

• openstack: support running jobs in VMs on OpenStack clouds

• ec2: support running jobs in VMs on OpenStack clouds

• optimizer: install math libraries needed by the optimizer library

For instance, to install all features use -a openstack,ec2,optimizer. To install no
optional feature, use -a none.

By default, all cloud-related features are installed.

-d DIRECTORY

Install GC3Pie in location DIRECTORY instead of $HOME/gc3pie

--overwrite

Overwrite the destination directory if it already exists. Default behavior is to abort installation.

--develop

Instead of installing the latest release of GC3Pie, it will install the master branch from the
GitHub repository.

--yes

Run non-interactively, and assume a “yes” reply to every question.

--no-gc3apps

Do not install any of the GC3Apps, e.g., gcodeml, grosetta and ggamess.

Manual installation

In case you can’t or don’t want to use the automatic installation script, the following instructions will guide you
through all the steps needed to manually install GC3Pie on your computer.

These instructions show how to install GC3Pie from the GC3 source repository into a separate python environment
(called virtualenv). Installation into a virtualenv has two distinct advantages:

• All code is confined in a single directory, and can thus be easily replaced/removed.

• Better dependency handling: additional Python packages that GC3Pie depends upon can be installed even if
they conflict with system-level packages.

0. Install software prerequisites:

• On Debian/Ubuntu, install these system packages:

apt-get install gcc g++ git python-dev libffi-dev libssl-dev make

• On CentOS5, install these packages:

yum install git python-devel gcc gcc-c++ libffi-devel make openssl-devel

• On other Linux distributions, you will need to install:

– the git command (from the Git VCS);

– Python development headers and libraries; (for installing extension libraries written in C/C++)

– a C/C++ compiler (this is usually installed by default);

– include files for the FFI and OpenSSL libraries.

2.1. User Documentation 5

http://pypi.python.org/pypi/virtualenv/1.7
https://git-scm.org/

gc3pie Documentation, Release 2.6.1

1. If virtualenv is not already installed on your system, get the Python package and install it:

wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.7.tar.gz
tar -xzf virtualenv-1.7.tar.gz && rm virtualenv-1.7.tar.gz
cd virtualenv-1.7/

If you are installing as root, the following command is all you need:

python setup.py install

If instead you are installing as a normal, unprivileged user, things get more complicated:

export PYTHONPATH=$HOME/lib64/python:$HOME/lib/python:$PYTHONPATH
export PATH=$PATH:$HOME/bin
mkdir -p $HOME/lib/python
python setup.py install --home $HOME

You will also have to add the two export lines above to the:

• $HOME/.bashrc file, if using the bash shell or to the

• $HOME/.cshrc file, if using the tcsh shell.

In any case, once virtualenv has been installed, you can exit its directory and remove it:

cd ..
rm -rf virtualenv-1.7

2. Create a virtualenv to host the GC3Pie installation, and cd into it:

virtualenv --system-site-packages $HOME/gc3pie
cd $HOME/gc3pie/
source bin/activate

In this step and in the following ones, the directory $HOME/gc3pie is going to be the installation folder of
GC3Pie. You can change this to another directory path; any directory that’s writable by your Linux account will
be OK.

If you are installing system-wide as root, we suggest you install GC3Pie into /opt/gc3pie instead.

3. Check-out the gc3pie files in a src/ directory:

git clone https://github.com/uzh/gc3pie.git src

4. Install the gc3pie in “develop” mode, so any modification pulled from GitHub is immediately reflected in the
running environment:

cd src/
env CC=gcc ./setup.py develop
cd .. # back into the `gc3pie` directory

This will place all the GC3Pie command into the gc3pie/bin/ directory.

5. GC3Pie comes with driver scripts to run and manage large families of jobs from a few selected applications.
These scripts are not installed by default because not everyone needs them.

Run the following commands to install the driver scripts for the applications you need:

6 Chapter 2. Table of Contents

http://pypi.python.org/pypi/virtualenv/1.7

gc3pie Documentation, Release 2.6.1

if you are insterested in GAMESS, do the following
ln -s '../src/gc3apps/gamess/ggamess.py' bin/ggamess

if you are insterested in Rosetta, do the following
ln -s '../src/gc3apps/rosetta/gdocking.py' bin/gdocking
ln -s '../src/gc3apps/rosetta/grosetta.py' bin/grosetta

if you are insterested in Codeml, do the following
ln -s '../src/gc3apps/codeml/gcodeml.py' bin/gcodeml

6. Now you can check your GC3Pie installation; just type the command:

gc3utils --help

and you should see the following output appear on your screen:

Usage: gc3utils COMMAND [options]

Command `gc3utils` is a unified front-end to computing resources.
You can get more help on a specific sub-command by typing::
gc3utils COMMAND --help

where command is one of these:
clean
cloud
get
info
kill
resub
select
servers
stat
tail

If you get some errors, do not despair! The GC3Pie users mailing-list <gc3pie@googlegroups.com> is there to
help you :-) (You can also post to the same forum using the web interface at https://groups.google.com/forum/
#!forum/gc3pie.)

7. With the default configuration file, GC3Pie is set up to only run jobs on the computer where it is installed. To run
jobs on remote resources, you need to edit the configuration file; the configuration file documentation provides
an explanation of the syntax.

Upgrade

If you used the installation script, the fastest way to upgrade is just to reinstall:

0. De-activate the current GC3Pie virtual environment:

deactivate

(If you get an error “command not found”, do not worry and proceed on to the next step; in case of other errors
please stop here and report to the GC3Pie users mailing-list <mailto:gc3pie.googlegroups.com>.)

1. Move the $HOME/gc3pie directory to another location, e.g.:

mv $HOME/gc3pie $HOME/gc3pie.OLD

2. Reinstall GC3Pie using the quick-install script (top of this page).

2.1. User Documentation 7

https://groups.google.com/forum/#!forum/gc3pie
https://groups.google.com/forum/#!forum/gc3pie
http://gc3pie.readthedocs.io/en/latest/users/configuration.html

gc3pie Documentation, Release 2.6.1

3. Once you have verified that your new installation is working, you can remove the $HOME/gc3pie.OLD
directory.

If instead you installed GC3Pie using the “manual installation” instructions, then the following steps will update
GC3Pie to the latest version in the code repository:

1. cd to the directory containing the GC3Pie virtualenv; assuming it is named gc3pie as in the above installation
instructions, you can issue the commands:

cd $HOME/gc3pie # use '/opt/gc3pie' if root

2. Activate the virtualenv:

source bin/activate

3. Upgrade the gc3pie source and run the setup.py script again:

cd src
svn up
env CC=gcc ./setup.py develop

Note: A major restructuring of the SVN repository took place in r1124 to r1126 (Feb. 15, 2011); if your sources are
older than SVN r1124, these upgrade instructions will not work, and you must reinstall completely. You can check
what version the SVN sources are, by running the svn info command in the src directory: watch out for the Revision:
line.

MacOSX Installation

Installation on MacOSX machines is possible, however there are still a few issues. If you need MacOSX support,
please let us know on the GC3Pie users mailing-list <mailto:gc3pie@googlegroups.com> or by posting a message
using the web interface at https://groups.google.com/forum/#!forum/gc3pie.

1) Standard usage of the installation script (i.e., with no options) works, but you have to use curl since wget is not
installed by default.

2) In order to install GC3Pie you will need to install XCode and, in some of the MacOSX versions, also the
Command Line Tools for XCode

3) Options can only be given in the abbreviated one-letter form (e.g., -d); the long form (e.g., --directory)
will not work.

4) The shellcmd backend of GC3Pie depends on the GNU time command, which is not installed on MacOSX by
default. This means that with a standard MacOSX installation the shellcmd resource will not work. However:

• other resources, like pbs via ssh transport, will work.

• you can install the GNU time command either via MacPorts, Fink, Homebrew or from this url. After
installing it you don’t need to update your PATH environment variable, it’s enough to set the time_cmd
option in your GC3Pie configuration file.

HTML Documentation

HTML documentation for the GC3Libs programming interface can be read online at:

http://gc3pie.readthedocs.io/

If you installed GC3Pie manually, or if you installed it using the install.py script with the --develop option,
you can also access a local copy of the documentation from the sources:

8 Chapter 2. Table of Contents

https://groups.google.com/forum/#!forum/gc3pie
https://developer.apple.com/xcode/
http://www.macports.org/
http://sourceforge.net/projects/fink/
http://mxcl.github.com/homebrew/
http://mirror.switch.ch/ftp/mirror/gnu/time/
http://gc3pie.readthedocs.io/

gc3pie Documentation, Release 2.6.1

cd $HOME/gc3pie # or wherever the gc3pie virtualenv is installed
cd src/docs
make html

Note that you need the Python package Sphinx in order to build the documentation locally.

Configuration File

Location

All commands in The GC3Apps software and The GC3Utils software read a few configuration files at startup:

• system-wide one located at /etc/gc3/gc3pie.conf,

• a virtual-environment-wide configuration located at $VIRTUAL_ENV/etc/gc3/gc3pie.conf, and

• a user-private one at $HOME/.gc3/gc3pie.conf, or, alternately, the file in the location pointed to by the
environmental variable GC3PIE_CONF.

All these files are optional, but at least one of them must exist.

All files use the same format. The system-wide one is read first, so that users can override the system-level configura-
tion in their private file. Configuration data from corresponding sections in the configuration files is merged; the value
in files read later overrides the one from the earler-read configuration.

If you try to start any GC3Utils command without having a configuration file, a sample one will be copied to the user-
private location ~/.gc3/gc3pie.conf and an error message will be displayed, directing you to edit the sample
file before retrying.

Configuration file format

The GC3Pie configuration file follows the format understood by Python ConfigParser; see http://docs.python.org/
library/configparser.html for reference.

Here is an example of what the configuration file looks like:

[auth/none]
type=none

[resource/localhost]
change the following to `enabled=no` to quickly disable
enabled=yes
type=shellcmd
transport=local
auth=none
max_cores=2
max_cores_per_job=2
...

You can see that:

• The GC3Pie configuration file consists of several configuration sections. Each configuration section starts with
a keyword in square brackets and continues until the start or the next section or the end of the file (whichever
happens first).

2.1. User Documentation 9

http://sphinx.pocoo.org/
http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html

gc3pie Documentation, Release 2.6.1

• A section’s body consists of a series of word=value assignments (we call these configuration items), each on
a line by its own. The word before the = sign is called the configuration key, and the value given to it is the
configuration value.

• Lines starting with the # character are comments: the line is meant for human readers and is completely ignored
by GC3Pie.

The following sections are used by the GC3Apps/GC3Utils programs:

• [DEFAULT] – this is for global settings.

• [auth/name] – these are for settings related to identity/authentication (identifying yourself to clusters &
grids).

• [resource/name] – these are for settings related to a specific computing resource (cluster, grid, etc.)

Sections with other names are allowed but will be ignored.

The DEFAULT section

The [DEFAULT] section is optional.

Values defined in the [DEFAULT] section can be used to insert values in other sections, using the %(name)s syntax.
See documentation of the Python SafeConfigParser object at http://docs.python.org/library/configparser.html for an
example.

auth sections

There can be more than one [auth] section.

Each authentication section must begin with a line of the form:

[auth/name]

where the name portion is any alphanumeric string.

You can have as many [auth/name] sections as you want; any name is allowed provided it’s composed only of
letters, numbers and the underscore character _. (Examples of valid names are: [auth/cloud], [auth/ssh1],
and [auth/user_name])

This allows you to define different auth methods for different resources. Each [resource/name] section can
reference one (and one only) authentication section, but the same [auth/name] section can be used by more than
one [resource/name] section.

Authentication types

Each auth section must specify a type setting.

type defines the authentication type that will be used to access a resource. There are three supported authentication
types:

type=... Use this for . . .
ec2 EC2-compatible cloud resources
none Resources that need no authentication
ssh Resources that will be accessed by opening an SSH connection to the front-end node of a cluster

10 Chapter 2. Table of Contents

http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html

gc3pie Documentation, Release 2.6.1

none-type authentication

This is for resources that actually need no authentication (transport=local) but still need to reference an
[auth/*] section for syntactical reasons.

GC3Pie automatically inserts in every configuration file a section [auth/none], which you can reference in re-
source sections with the line auth=none.

Because of the automatically-generated [auth/none], there is hardly ever a reason to explicitly write such a section
(doing so is not an error, though):

[auth/none]
type=none

ssh-type authentication

For the ssh-type auth, the following keys must be provided:

• type: must be ssh

• username: must be the username to log in as on the remote machine

The following configuration keys are instead optional:

• port: TCP port number where the SSH server is listening. The default value 22 is fine for almost all cases;
change it only if you know what you are doing.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from (default: $HOME/ssh/
config:file:. The format of the SSH configuration file is documented in the ssh_config(5) man page.

• timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be estab-
lished.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

Example. The following configuration sections are used to set up two different accounts that GC3Pie programs can
use. Which account should be used on which computational resource is defined in the resource sections (see below).

[auth/ssh1]
type = ssh
username = murri # your username here

[auth/ssh2] # I use a different account name on some resources
type = ssh
username = rmurri
read additional options from this SSH config file
ssh_config = ~/.ssh/alt-config

ec2-type authentication

For the ec2-type auth, the following keys can be provided:

2.1. User Documentation 11

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.1

• ec2_access_key: Your personal access key to authenticate against the specific cloud endpoint. If not found,
the value of the environment variable EC2_ACCESS_KEY will be used; if the environment variable is unset,
GC3Pie will raise a ConfigurationError.

• ec2_secret_key: Your personal secret key associated with the above ec2_access_key. If not found,
the value of the environment variable EC2_SECRET_KEY will be used; if the environment variable is unset,
GC3Pie will raise a ConfigurationError.

Any other key/value pair will be silently ignored.

Example. The following configuration section is used to access an EC2-compatible resource (access and secret keys
are of course invalid):

[auth/hobbes]
type=ec2
ec2_access_key=1234567890qwertyuiopasdfghjklzxc
ec2_secret_key=cxzlkjhgfdsapoiuytrewq0987654321

resource sections

Each resource section must begin with a line of the form:

[resource/name]

You can have as many [resource/name] sections as you want; this allows you to define many different resources.
Each [resource/name] section must reference one (and one only) [auth/name] section (by its auth key).

Resources currently come in several flavours, distinguished by the value of the type key. Valid values for the type=.
.. configuration line are listed in the table below.

type=... The resource is . . .
ec2+shellcmd a cloud with EC2-compatible APIs: applications are run on Virtual Machines started on the

cloud
lsf an LSF batch-queuing system
pbs a TORQUE or PBSPro batch-queuing system
sge a Grid Engine batch-queuing system
shellcmd a single Linux or MacOSX computer: applications are executed by spawning a local UNIX

process
slurm a SLURM batch-queuing system

Link to [auth/...] sections

All [resource/name] sections must reference a valid [auth/aname] section via the auth=aname line. If the
auth=... line is omitted, GC3Pie’s default is auth=none.

Type of the resource and the referenced [auth/...] section must match:

• Resources of type ec2+shellcmd can only reference [auth/...] sections of type ec2.

• Batch-queuing resources (type is one of sge, pbs, lsf, or slurm) and resources of type shellcmd
can reference [auth/...] sections of type ssh (when transport=ssh) or [auth/none] (when
transport=local).

12 Chapter 2. Table of Contents

http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/index.html
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.pbspro.org/
http://gridengine.org/blog/2011/11/23/what-now/
https://computing.llnl.gov/linux/slurm/

gc3pie Documentation, Release 2.6.1

Configuration keys common to all resource types

The following configuration keys are commmon to all resources, regardless of type.

Configura-
tion key

Meaning

type Resource type, see above.
auth Name of a valid [auth/name] section; only the authentication section name (after the /) must

be specified.
max_cores_per_jobMaximum number of CPU cores that a job can request; a resource will be dropped during the

brokering process if a task requests more cores than this.
max_memory_per_coreMaximum amount of memory that a task can request; a resource will be dropped during the

brokering process if a task requests more memory than this.
max_walltimeMaximum job running time.
max_cores Total number of cores provided by the resource.
architectureProcessor architecture. Should be one of the strings x86_64 (for 64-bit Intel/AMD/VIA proces-

sors), i686 (for 32-bit Intel/AMD/VIA x86 processors), or x86_64,i686 if both architectures
are available on the resource.

time_cmd Path to the GNU time program. Default is /usr/bin/time
large_file_thresholdFiles less than this size will be copied in one go. Only relevant for SSH transfers; ignored other-

wise.
large_file_chunk_sizeFiles larger than the threshold above will be copied in chunks of this size, one chunk at a time.

Only relevant for SSH transfers; ignored otherwise.

Configuration keys common to batch-queuing resource types

The following configuration keys can be used in any resource of type pbs, lsf, sge, or slurm.

• spooldir: Root path to the batch jobs’ working directories. GC3Pie will create dedicated temporary working
directories, one for each job, within this root folder.

By default, working directories are created as subdirectories of $HOME/.gc3pie_jobs.

Note: The job working directories must be visible (with the same filesystem path) and writable on both the
front-end node (with which GC3Pie interacts) and the compute nodes (where a job’s payload actually runs).

• prologue: Path to a script file, whose contents are inserted into the submission script of each application that
runs on the resource. Commands from the prologue script are executed before the real application; the prologue
is intended to execute some shell commands needed to setup the execution environment before running the
application (e.g. running a module load ... command).

Note: The prologue script must be a valid plain /bin/sh script; she-bang indications will not be honored.

• application_prologue: Same as prologue, but it is used only when application matches the
name of the application (as specified by the application_name attribute on the GC3Pie Application
instance).

• prologue_content: A (possibly multi-line) string that will be inserted into the submission script and exe-
cuted before the real application. Like the prologue script, commands must be given using /bin/sh syntax.

2.1. User Documentation 13

https://en.wikipedia.org/wiki/Shebang_(Unix)

gc3pie Documentation, Release 2.6.1

• application_prologue_content: Same as prologue_content, but it is used only when
application matches the name of the application (as specified by the application_name attribute on
the GC3Pie Application instance).

Warning: Errors in a prologue script will prevent any application from running on the resource! Keep prologue
commands to a minimum and always check their correctness.

If several prologue-related options are specified, then commands are inserted into the submission script in the following
order:

• first content of the prologue script,

• then content of the application_prologue script,

• then commands from the prologue_content configuration item,

• finally commands from the application_prologue_content configuration item.

A similar set of options allow defining commands to be executed after an application has finished running:

• epilogue: The content of the epilogue script will be inserted into the submission script and is executed after
the real application has been submitted

Note: The epilogue script must be a valid plain /bin/sh script; she-bang indications will not be honored.

• application_epilogue : Same as epilogue, but used only when
{application}`:file: matches the name of the application (as specified
by the ``application_name attribute on the GC3Pie Application instance).

• epilogue_content: A (possibly multi-line) string that will be inserted into the submission script and ex-
ecuted after the real application has completed. Like the epilogue script, commands must be given using
/bin/sh syntax.

• application_epilogue_content : Same as epilogue_content, but used only when
application matches the name of the application (as specified by the application_name attribute on
the GC3Pie Application instance).

Warning: Errors in an epilogue script prevent GC3Pie from reaping the application’s exit status. In particular,
errors in the epilogue commands can make GC3Pie consider the whole application as failed, and use the epilogue’s
error exit as the overall exit code.

If several epilogue-related options are specified, then commands are inserted into the submission script in the following
order:

• first contents of the epilogue script,

• then contents of the application_epilogue script,

• then commands from the epilogue_content configuration item,

• finally commands from the application_epilogue_content configuration item.

sge resources (all batch systems of the Grid Engine family)

The following configuration keys are required in a sge-type resource section:

14 Chapter 2. Table of Contents

https://en.wikipedia.org/wiki/Shebang_(Unix)

gc3pie Documentation, Release 2.6.1

• frontend: should contain the FQDN (Fully-qualified domain name) of the SGE front-end node. An SSH
connection will be attempted to this node, in order to submit jobs and retrieve status info.

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified in
frontend via SSH in order to execute SGE commands. If local, the SGE commands are run directly on the
machine where GC3Pie is installed.

To submit parallel jobs to SGE, a “parallel environment” name must be specified. You can specify the PE to be used
with a specific application using a configuration parameter application name + _pe (e.g., gamess_pe, zods_pe);
the default_pe parameter dictates the parallel environment to use if no application-specific one is defined. If
neither the application-specific, nor the ‘‘default_pe‘‘ parallel environments are defined, then submission of parallel
jobs will fail.

When a job has finished, the SGE batch system does not (by default) immediately write its information into the
accounting database. This creates a time window during which no information is reported about the job by SGE,
as if it never existed. In order not to mistake this for a “job lost” error, GC3Libs allow a “grace time”: qacct job
information lookups are allowed to fail for a certain time span after the first time qstat failed. The duration of this
time span is set with the sge_accounting_delay parameter, whose default is 15 seconds (matches the default in
SGE, as of release 6.2):

• sge_accounting_delay: Time (in seconds) a failure in qacct will not be considered critical.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the SGE backend:

• qsub: submit a job.

• qacct: get info on resources used by a job.

• qdel: cancel a job.

• qstat: get the status of a job or the status of available resources.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

pbs resources (TORQUE and PBSPro batch-queueing systems)

The following configuration keys are required in a pbs-type resource section:

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified in
frontend via SSH in order to execute Troque/PBS commands. If local, the TORQUE/PBSPro commands
are run directly on the machine where GC3Pie is installed.

2.1. User Documentation 15

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.1

• frontend: should contain the FQDN of the TORQUE/PBSPro front-end node. This configuration item is
only relevant if transport is local. An SSH connection will be attempted to this node, in order to submit
jobs and retrieve status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the PBS backend:

• queue: the name of the queue to which jobs are submitted. If empty (the default), no queue will be specified
during submission, using the resource manager’s default.

• qsub: submit a job.

• qdel: cancel a job.

• qstat: get the status of a job or the status of available resources.

• tracejob: get info on resources used by a job.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

lsf resources (IBM LSF)

The following configuration keys are required in a lsf-type resource section:

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified in
frontend via SSH in order to execute LSF commands. If local, the LSF commands are run directly on the
machine where GC3Pie is installed.

• frontend: should contain the FQDN of the LSF front-end node. This configuration item is only relevant if
transport is local. An SSH connection will be attempted to this node, in order to submit jobs and retrieve
status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the LSF backend:

• bsub: submit a job.

• bjobs: get the status and resource usage of a job.

• bkill: cancel a job.

• lshosts: get info on available resources.

16 Chapter 2. Table of Contents

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.1

LSF commands use a weird formatting: lines longer than 79 characters are wrapped around, and the continuation
line starts with a long run of spaces. The length of this run of whitespace seems to vary with LSF version; GC3Pie
is normally able to auto-detect it, but there can be a few unlikely cases where it cannot. If this ever happens, the
following configuration option is here to help:

• lsf_continuation_line_prefix_length: length (in characters) of the whitespace prefix of continu-
ation lines in bjobs output. This setting is normally not needed.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

slurm resources

The following configuration keys are required in a slurm-type resource section:

• transport: Possible values are: ssh or local. If ssh, GC3Pie tries to connect to the host specified
in frontend via SSH in order to execute SLURM commands. If local, the SLURM commands are run
directly on the machine where GC3Pie is installed.

• frontend: should contain the FQDN of the SLURM front-end node. This configuration item is only relevant
if transport is ssh. An SSH connection will be attempted to this node, in order to submit jobs and retrieve
status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands are
searched using the PATH environment variable, but you can specify the full path of these commands and/or add some
extra options. The following options are used by the SLURM backend:

• sbatch: submit a job; can specify additional arguments (they will be inserted between the sbatch invocation
and the GC3Pie-provided options)

• srun: run a job’s payload; can specify additional arguments (they will be inserted between the srun invocation
and the GC3Pie-provided options)

• scancel: cancel a job.

• squeue: get the status of a job or of the available resources.

• sacct: get info on resources used by a job.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

2.1. User Documentation 17

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.6.1

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

shellcmd resources

The following optional configuration keys are available in a shellcmd-type resource section:

• transport: Like any other resources, possible values are ssh or local. Default value is local.

• frontend: If transport is ssh, then frontend is the FQDN of the remote machine where the jobs will be
executed.

• time_cmd: ShellcmdLrms needs the GNU implementation of the command time in order to get resource
usage of the submitted jobs. time_cmd must contains the path to the binary file if this is different from the
standard (/usr/bin/time).

• override: ShellcmdLrms by default will try to gather information on the system the resource is running
on, including the number of cores and the available memory. These values may be different from the values
stored in the configuration file. If override is True, then the values automatically discovered will be used. If
override is False, the values in the configuration file will be used regardless of the real values discovered by
the resource.

• spooldir: Root path to a filesystem location where to create temporary working directories for processes
executed through this backend. GC3Pie will create dedicated temporary working directories, one for each job,
within this root folder.

By default, working directories are created as subdirectories of $HOME/.gc3pie_jobs.

If transport is ssh, then the following options are also read and take precedence above the corresponding options
set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the SSH
configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

ec2+shellcmd resource

The following configuration options are available for a resource of type ec2+shellcmd. If these options are omitted,
then the default of the boto python library will be used, which at the time of writing means use the default region on
Amazon.

18 Chapter 2. Table of Contents

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5
https://github.com/boto/boto

gc3pie Documentation, Release 2.6.1

• ec2_url: The URL of the EC2 frontend. On Amazon’s AWS this is something like https://ec2.
us-east-1.amazonaws.com (this is valid for the zone us-east-1 of course). If no value is specified,
the environment variable EC2_URL will be used, and if not found an error is raised.

• ec2_region: the region you want to access to.

• keypair_name: the name of the keypair to use when creating a new instance on the cloud. If it’s not found,
a new keypair with this name and the key stored in public_key will be used. Please note that if the keypair
exists already on the cloud but the associated public key is different from the one stored in public_key, then
an error is raised and the resource will not be used.

• public_key: public key to use when creating the keypair.

Note: GC3Pie assumes that the corresponding private key is stored on a file with the same path but without the
.pub extension. This private key is necessary in order to access the virtual machines created on the cloud.

Note: For Amazon AWS users: Please note that AWS EC2 does not accept DSA keys; use RSA keys only for
AWS resources.

• vm_auth: the name of a valid auth stanza used to connect to the virtual machine.

• instance_type: the instance type (aka flavor, aka size) you want to use for your virtual machines by default.

• <application>_instance_type: you can override the default instance type for a specific application
by defining an entry in the configuration file for that application. For example:

instance_type=m1.tiny
gc_gps_instance_type=m1.large

will use instance type m1.large for the gc_gps GC3Pie application, and m1.tiny for all the other appli-
cations.

• image_id: the ami-id of the image you want to use.

• <application>_image_id: override the generic image_id for a specific application.

For example:

image_id=ami-00000048
gc_gps_image_id=ami-0000002a

will make GC3Pie use the image ami-0000002a when running gc_gps, and image ami-00000048 for
all other applications.

• security_group_name: name of the security group to associate with VMs started by GC3Pie.

If the named security group cannot be found, it will be created using the rules found
in security_group_rules. If the security group is found but some of the rules in
security_group_rules are not present, they will be added to the security groups. Additional
rules, which are listed in the EC2 console but not included in security_group_rules, will not be
removed from the security group.

• security_group_rules: comma separated list of security rules the security_group must have.

Each rule has the form:

PROTOCOL:PORT_RANGE_START:PORT_RANGE_END:IP_NETWORK

2.1. User Documentation 19

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html

gc3pie Documentation, Release 2.6.1

where:

– PROTOCOL is one of tcp, udp, icmp;

– PORT_RANGE_START and PORT_RANGE_END are integers and define the range of ports to allow. If
PROTOCOL is icmp please use -1 for both values since in icmp there is no concept of port.

– IP_NETWORK is a range of IP to allow in the form A.B.C.D/N.

For instance, to allow SSH access to the virtual machine from any machine in the internet you can use:

security_group_rules = tcp:22:22:0.0.0.0/0

Note: In order to be able to access the virtual machines it created, GC3Pie needs to be able to connect via SSH,
so a rule like the above is probably necessary in any GC3Pie configuration. For better security, it is wise to only
allow the IP address or the range of IP addresses in use at your institution.

• vm_pool_max_size: the maximum number of Virtual Machine GC3Pie will start on this cloud. If 0 then
there is no predefined limit to the number of virtual machines that GC3Pie can spawn.

• user_data: the content of a script that will run after the startup of the machine. For instance, to automatically
upgrade a ubuntu machine after startup you can use:

user_data=#!/bin/bash
aptitude -y update
aptitude -y safe-upgrade

Note: When entering multi-line scripts, lines after the first one (where user_data= is) must be indented, i.e.,
begin with one or more spaces.

• <application>_user_data: override the generic user_data for a specific application.

For example:

user_data=
warholize_user_data = #!/bin/bash
aptitude -y update && aptitude -y install imagemagick

will install the imagemagick package only for VMs meant to run the warholize application.

Example resource sections

Example 1. This configuration stanza defines a resource to submit jobs to the Grid Engine cluster whose front-end
host is ocikbpra.uzh.ch:

[resource/ocikbpra]
A single SGE cluster, accessed by SSH'ing to the front-end node
type = sge
auth = <auth_name> # pick an ``ssh`` type auth, e.g., "ssh1"
transport = ssh
frontend = ocikbpra.uzh.ch
gamess_location = /share/apps/gamess
max_cores_per_job = 80
max_memory_per_core = 2

(continues on next page)

20 Chapter 2. Table of Contents

http://gridengine.org/blog/2011/11/23/what-now/

gc3pie Documentation, Release 2.6.1

(continued from previous page)

max_walltime = 2
ncores = 80

Example 2. This configuration stanza defines a resource to submit jobs on virtual machines that will be automatically
started by GC3Pie on Hobbes, the private OpenStack cloud of the University of Zurich:

[resource/hobbes]
enabled=yes
type=ec2+shellcmd
ec2_url=http://hobbes.gc3.uzh.ch:8773/services/Cloud
ec2_region=nova

auth=ec2hobbes
These values my be overwritten by the remote resource
max_cores_per_job = 8
max_memory_per_core = 2
max_walltime = 8
max_cores = 32
architecture = x86_64

keypair_name=my_name
If keypair does not exists, a new one will be created starting from
`public_key`. Note that if the desired keypair exists, a check is
done on its fingerprint and a warning is issued if it does not match
with the one in `public_key`
public_key=~/.ssh/id_dsa.pub
vm_auth=gc3user_ssh
instance_type=m1.tiny
warholize_instance_type = m1.small
image_id=ami-00000048
warholize_image_id=ami-00000035
security_group_name=gc3pie_ssh
security_group_rules=tcp:22:22:0.0.0.0/0, icmp:-1:-1:0.0.0.0/0
vm_pool_max_size = 8
user_data=
warholize_user_data = #!/bin/bash

aptitude update && aptitude install -u imagemagick

Enabling/disabling selected resources

Any resource can be disabled by adding a line enabled = false to its configuration stanza. Conversely, a line
enabled = true will undo the effect of an enabled = false line (possibly found in a different configuration
file).

This way, resources can be temporarily disabled (e.g., the cluster is down for maintenance) without having to remove
them from the configuration file.

You can selectively disable or enable resources that are defined in the system-wide configuration file. Two main
use cases are supported: the system-wide configuration file :file:/etc/gc3/gc3pie.conf lists and enables all
available resources, and users can turn them off in their private configuration file :file:~/.gc3/gc3pie.conf; or
the system-wide configuration can list all available resources but keep them disabled, and users can enable those they
prefer in the private configuration file.

2.1. User Documentation 21

http://www.gc3.uzh.ch/infrastructure/hobbes

gc3pie Documentation, Release 2.6.1

Environment Variables

The following environmental variables affect GC3Pie operations.

GC3PIE_CONF

Path to an alternate configuration file, that is read upon initialization of GC3Pie. If defined, this file is read
instead of the default $HOME/.gc3/gc3pie.conf; if undefined or empty, the usual configuration file
is loaded.

GC3PIE_ID_FILE

Path to the a shared state file, used for recording the “next available” job ID number. By default, it is
located at ~/.gc3/next_id.txt:file:.

GC3PIE_NO_CATCH_ERRORS

Comma-separated list of unexpected/generic error patterns upon which GC3Pie will not act (by default,
ignoring them). Each of these “unignored” errors will be propagated all the way up to top-level. This
facilitates running GC3Pie scripts in a debugger and inspecting the code when some unexpected error
condition happens.

You can specify which errors to “unignore” by:

• Error class name (e.g., InputFileError). Note that this must be the exact class name of the
error: GC3Pie will not walk the error class hierarchy for matches.

• Function/class/module name: all errors handled in the specified function/class/module will be prop-
agated to the caller.

• Additional keywords describing the error. Please have a look at the source code for these keywords.

GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL

If this environmental variable is set to yes or 1, GC3Pie will abort operations immediately if a configured
resource cannot be initialized. The default behavior is instead to ignore initialization errors and only abort
if no resources can be initialized.

GC3Pie usage tutorials

The following slides provide an overview of GC3Pie features and usage from a users’ perspective. They are used in
the GC3Pie for users training held regularly at the University of Zurich. (Thus, they may contain references to local
infrastructure or systems but should be comprehensible and -hopefully- useful for a more general audience as well.)

Introduction to GC3Pie

Introduction to the software: what is GC3Pie, what is it for, and an overview of its features for writing
high-throughput computing scripts.

Introduction to GC3Pie session-based scripts

An overview of the features of GC3Pie’s session-based scripts and the associated command-line utilities.

The GC3Apps software

GC3Apps is a collection command line front-end to manage submission of a (potentially) large number of computa-
tional job to different batch processing systems. For example, the GC3Apps commands ggamess can run GAMESS
jobs on the SMSCG infrastructure and on any computational cluster you can ssh:command: into.

This chapter is a tutorial for the GC3Apps command-line scripts: it explains the common concepts and features, then
goes on to describe the specifics of each command in larger detail.

22 Chapter 2. Table of Contents

https://www.s3it.uzh.ch/en/scienceit/support/training/gc3pie/users.html
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part01.pdf
https://github.com/uzh/gc3pie/tree/master/docs/users/tutorial/slides.pdf
http://www.msg.ameslab.gov/gamess/
http://www.smscg.ch/

gc3pie Documentation, Release 2.6.1

All GC3Apps scripts share a common set of functionalities, which are derive from a common blueprint, named a
session-based script, described in Section Introduction to session-based scripts below. Script-specific sections detail
the scope and options that are unique to a given script.

If you find a technical term whose meaning is not clear to you, please look it up in the Glossary. (But feel free to ask
on the GC3Pie mailing list if it’s still unclear!)

Introduction to session-based scripts

All GC3Apps scripts derive their core functionality from a common blueprint, named a session-based script. The
purpose of this section is to describe this common functionality; script-specific sections detail the scope and options
that are unique to a given script. Readers interested in Python programming can find the complete documentation
about the session-based script API in the SessionBasedScript section.

The functioning of GC3Apps scripts revolves around a so-called session. A session is just a named collection of jobs.
For instance, you could group into a single session jobs that analyze a set of related files.

Each time it is run, a GC3Apps script performs the following steps:

1. Reads the session directory and loads all stored jobs into memory. If the session directory does not exist, one
will be created with empty contents.

2. Scans the command-line input arguments: if existing jobs do not suffice to analyze the input data, new jobs are
added to the session.

3. The status of all existing jobs is updated, output from finished jobs is collected, and new jobs are submitted.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option below.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

Execution can be interrupted at any time by pressing Ctrl+C.

Basic command-line usage and options

The exact command-line usage of session-based scripts varies from one script to the other, so please consult the
documentation page for your application. There are quite a number of common options and behaviors, however,
which are described here.

Continuous execution

While single-pass execution of a GC3Apps script is possible (and sometimes used), it is much more common to keep
the script running and let it manage jobs until all are finished. This is accomplished with the following command-line
option:

-C NUM, --continuous NUM Keep running, monitoring jobs and possibly submitting
new ones or fetching results every NUM seconds.

When all jobs are finished, a GC3Apps script exits even if the -C
option is given.

2.1. User Documentation 23

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.6.1

Verbose listing of jobs

Only a summary of job states is printed by default at the end of step 3., together with the count of jobs that are in the
specified state. Use the -l option (see below) to get a detailed listing of all jobs.

-l STATE, --state STATE Print a table of jobs including their status.

The STATE argument restricts output to jobs in that particular state.
It can be a single state word (e.g., RUNNING) or a comma-separated
list thereof (e.g., NEW,SUBMITTED,RUNNING).

The pseudo-states ok and failed are also allowed for select-
ing jobs in TERMINATED state with exit code (respectively) 0 or
nonzero.

If STATE is omitted, no restriction is placed on job states, and a table
of all jobs is printed.

Maximum number of concurrent jobs

There is a maximum number of jobs that can be in SUBMITTED or RUNNING state at a given time. GC3Apps scripts
will delay submission of newly-created jobs so that this limit is never exceeded. The default limit is 50, but it can be
changed with the following command-line option:

-J NUM, --max-running NUM Set the maximum NUMber of jobs (default: 50) in
SUBMITTED or RUNNING state.

Location of output files

By default, output files are placed in the same directory where the corresponding input file resides. This can be changed
with the following option; it is also possible to specify output locations that vary depending on certain job features.

-o DIRECTORY, --output DIRECTORY Output files from all jobs will be collected in
the specified DIRECTORY path. If the destination directory does not
exist, it is created.

Job control options

These command-line options control the requirements and constraints of new jobs. Indeed, note that changing the
arguments to these options does not change the corresponding requirements on jobs that already exist in the session.

-c NUM, --cpu-cores NUM Set the number of CPU cores required for each job (default:
1). NUM must be a whole number.

-m GIGABYTES, --memory-per-core GIGABYTES Set the amount of memory re-
quired per execution core; (Default: 2GB). Specify this as an integral
number followed by a unit, e.g. ‘512MB’ or ‘4GB’. Valid unit names
are: ‘B’, ‘GB’, ‘GiB’, ‘KiB’, ‘MB’, ‘MiB’, ‘PB’, ‘PiB’, ‘TB’, ‘TiB’,
‘kB’.

-r NAME, --resource NAME Submit jobs to a specific resource. NAME is a reource
name or comma-separated list of resource names. Use the command
gservers to list available resources.

24 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

-w DURATION, --wall-clock-time DURATION Set the time limit for each job; default
is ‘8 hours’. Jobs exceeding this limit will be stopped and consid-
ered as ‘failed’. The duration can be expressed as a whole number
followed by a time unit, e.g., ‘3600 s’, ‘60 minutes’, ‘8 hours’, or a
combination thereof, e.g., ‘2hours 30minutes’. Valid unit names are:
‘d’, ‘day’, ‘days’, ‘h’, ‘hour’, ‘hours’, ‘hr’, ‘hrs’, ‘m’, ‘microsec’,
‘microseconds’, ‘min’, ‘mins’, ‘minute’, ‘minutes’, ‘ms’, ‘nanosec’,
‘nanoseconds’, ‘ns’, ‘s’, ‘sec’, ‘second’, ‘seconds’, ‘secs’.

Session control options

This set of options control the placement and contents of the session.

-s PATH, --session PATH Store the session information in the directory at PATH. (By
default, this is a subdirectory of the current directory, named after
the script you are executing.)

If PATH is an existing directory, it will be used for storing job in-
formation, and an index file (with suffix .csv) will be created in it.
Otherwise, the job information will be stored in a directory named
after PATH with a suffix .jobs appended, and the index file will be
named after PATH with a suffix .csv added.

-N, --new-session Discard any information saved in the session directory (see the
--session option) and start a new session afresh. Any informa-
tion about jobs previously recorded in the session is lost.

-u, --store-url URL Store GC3Pie job information at the persistent storage specified by
URL. The URL can be any form that is understood by the gc3libs.
persistence.make_store() function (which see for details).
A few examples:

• sqlite – the jobs are stored in a SQLite3 database named
jobs.db and contained in the session directory.

• /path/to/a/directory – the jobs are stored in the given
directory, one file per job (this is the default format used by
GC3Pie)

• sqlite:////path/to/a/file.db – the jobs are stored
in the given SQLite3 database file.

• mysql://user,passwd@server/dbname – jobs are
stored in table store of the specified MySQL database. The
DB server and connection credentials (username, password) are
also part of the URL.

If this option is omitted, GC3Pie’s SessionBasedScript defaults to
storing jobs in the subdirectory jobs of the session directory; each
job is saved in a separate file.

Exit code

A GC3Apps script exits when all jobs are finished, when some error occurred that prevented the script from complet-
ing, or when a user interrupts it with Ctrl+C

2.1. User Documentation 25

gc3pie Documentation, Release 2.6.1

In any case, the exit code of GC3Apps scripts tracks job status (in the following sense). The exitcode is a bitfield; the
4 least-significant bits are assigned a meaning according to the following table:

Bit Meaning
0 Set if a fatal error occurred: the script could not complete
1 Set if there are jobs in FAILED state
2 Set if there are jobs in RUNNING or SUBMITTED state
3 Set if there are jobs in NEW state

This boils down to the following rules:

• exitcode is 0: all jobs are DONE, no further action will be taken by the script (which exists immediately if called
again on the same session).

• exitcode is 1: an error interrupted the script execution.

• exitcode is 2: all jobs finished, but some are in FAILED state.

• exitcode > 3: run the script again to make jobs progress.

The ggamess script

GC3Apps provide a script drive execution of multiple gamess jobs each of them with a different input file. It uses
the generic gc3libs.cmdline.SessionBasedScript framework.

The purpose of GAMESS is to execute several concurrent runs of GAMESS each with separate input file. These runs
are performed in parallel using every available GC3Pie parameters.

How to run GAMESS on the Grid

SSH to ocikbgtw, then run the command (it’s one single command line, even if it appears broken in several ones in the
mail):

ggamess.py -A ~/beckya-dmulti.changes.tar.gz -R 2011R3-beckya-dmulti -s "a_session_
→˓name" "input_files_or_directories"

The parts in double quotes should be replaced with actual content:

a_session_name:

Used for grouping. This is a word of your choosing (e.g., “test1”, “control_group”), used
as a label to tag a group of analyses. Multiple concurrent sessions can exist, and they won’t
interfere one with the other. Again, note that a single session can run many different .inp files.

input_files_or_directories:

This part consists in the path name of .inp files or a directory containing .inp files. When a
directory is specified, all the .inp files contained in it are submitted as GAMESS jobs.

After running, the program will print a short summary of the session (how many jobs running, how many queued, how
many finished). Each finished job creates one directory (whose name is equal to the name of the input file, minus the
trailing .inp), which contains the .out and .dat files.

For shorter typing, I have defined an alias ggms to expand to the above string ggamess.py -A ...
2011R3-beckya-dmulti, so you could shorten the command to just:

26 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

ggms -s "a_session_name" "input_files_or_directories"

For instance, to use ggames.py to analyse a single .inp file you must run:

ggms -s "single" dmulti/inp/neutral/dmulti_cc4l.inp

while to use ggamess.py to run several GAMESS jobs in parallel:

ggms -s "multiple" dmulti/inp/neutral

Tweaking execution

Command-line options (those that start with a dash character ‘-’) can be used to alter the behavior of the ggamess.py
command:

-A filename.changes.tar.gz

This selects the file containing your customized version of GAMESS in a format suitable for
running in a virtual machine on the Grid. This file should be created following the procedure
detailed below.

-R version

Select a specific version of GAMESS. This should have been installed in the virtual ma-
chine within a directory named gamess-version; for example, your modified GAMESS
is saved in directory gamess-2011R3-beckya-dmulti so the “version” string is
2011R3-beckya-dmulti.

If you omit the -R “version” part, you get the default GAMESS which is presently 2011R1.

-s session

Group jobs in a named session; see above.

-w NUM

Request a running time of at NUM hours. If you omit this part, the default is 8 hours.

-m NUM

Request NUM Gigabytes of memory for running each job. GAMESS’ memory is measured in
words, and each word is 8 bytes; add 1 GB to the total to be safe :-)

Updating the GAMESS code

For this you will need to launch the AppPot virtual machine, which is done by running the following command at the
command prompt on ocikbgtw:

apppot-start.sh

After a few seconds, you should find yourself at the same user@rootstrap prompt that you get on your VirtualBox
instance, so you can use the same commands etc.

The only difference of note is that you can exchange files between the AppPot virtual machine and ocikbgtw via the
job directory (whereas it’s /scratch in VirtualBox). So: files you copy into job in the AppPot VM will appear into
your home directory on ocikbgtw, and conversely files from your home directory on ocikbgtw can be read/written as if
they were into directory job in the AppPot VM.

2.1. User Documentation 27

gc3pie Documentation, Release 2.6.1

Once you have compiled a new version of GAMESS that you wish to test, you need to run this command (at the
user@rootstrap command prompt in the AppPot VM):

sudo apppot-snap changes ~/job/beckya-dmulti.changes.tar.gz

This will overwrite the file beckya-dmulti.changes.tar.gz with the new GAMESS version. If you don’t
want to overwrite it and instead create another one, just change the filename above (but it has to end with the string
.changes.tar.gz), and the use the new name for the -R option to ggamess.py

Exit the AppPot VM by typing exit at the command prompt.

The ggeotop script

GC3Apps provide a script drive execution of multiple GEOtop jobs. It uses the generic
gc3libs.cmdline.SessionBasedScript framework.

From GEOtop’s “read me” file:

#
RUNNING
Run this simulation by calling the executable (GEOtop_1.223_static)
and giving the simulation directory as an argument.
#
EXAMPLE
ls2:/group/geotop/sim/tmp/000001>./GEOtop_1.223_static ./
#
TERMINATION OF SIMULATION BY GEOTOP
When GEOtop terminates due to an internal error, it mostly reports this
by writing a corresponding file (_FAILED_RUN or _FAILED_RUN.old) in the
simulation directory. When is terminates sucessfully this file is
named (_SUCCESSFUL_RUN or _SUCCESSFUL_RUN.old).
#
RESTARTING SIMULATIONS THAT WERE TERMINATED BY THE SERVER
When a simulation is started again with the same arguments as described
above (RUNNING), then it continues from the last saving point. If
GEOtop finds a file indicating a successful/failed run, it terminates.

Introduction

ggeotop driver script acan the specified INPUT directories recursively for simulation directories and submit a job
for each one found; job progress is monitored and, when a job is done, its output files are retrieved back into the
simulation directory itself.

A simulation directory is defined as a directory containing a geotop.inpts file, an in and an out folders.

The ggeotop command keeps a record of jobs (submitted, executed and pending) in a session file (set name with the
-s option); at each invocation of the command, the status of all recorded jobs is updated, output from finished jobs is
collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input files are
added to the command line.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; ggeotop
will delay submission of newly-created jobs so that this limit is never exceeded.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; ggeotop
will delay submission of newly-created jobs so that this limit is never exceeded.

In more detail, ggeotop does the following:

28 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs into
memory. If the session directory does not exist, one will be created with empty contents.

2. Recursively scans trough input folder searching for any valid folder.

ggeotop will generate a collection of jobs one for each valid input folder. Each job will transfer the input
folder to the remote execution node and run GEOTop. GEOTop reads geotop.inpts files for getting instructions
on how to find the input data, what and how to process and where to place generated output results. Extracted
from a generic geotop.inpts file:

DemFile = "in/dem"
MeteoFile = "in/meteo"
SkyViewFactorMapFile = "in/svf"
SlopeMapFile = "in/slp"
AspectMapFile = "in/asp"

!==
! DIST OUTPUT
!==
SoilAveragedTempTensorFile = "out/maps/T"
NetShortwaveRadiationMapFile="out/maps/SWnet"
InShortwaveRadiationMapFile="out/maps/SWin"
InLongwaveRadiationMapFile="out/maps/LWin"
SWEMapFile= "out/maps/SWE"
AirTempMapFile = "out/maps/Ta"

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in step
2.

4. For each of the terminated jobs, a post-process routine is executed to check and validate the consistency of
the generated output. If no _SUCCESSFUL_RUN or _FAILED_RUN file is found, the related job will be
resubmitted together with the current input and output folders. GEOTop is capable of restarting an interrupted
claculation by inspecting the intermediate results generated in out folder.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program ggeotop exits when all jobs have run to completion, i.e., when all valid input folders have been
computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be resumed
at a later stage by calling ggeotop with exactly the same command-line options.

Command-line invocation of ggeotop

The ggeotop script is based on GC3Pie’s session-based script model; please read also the Introduction to session-
based scripts section for an introduction to sessions and generic command-line options.

A ggeotop command-line is constructed as follows:

1. Each argument (at least one should be specified) is considered as a folder reference.

2. -x option is used to specify the path to the GEOtop executable file.

Example 1. The following command-line invocation uses ggeotop to run GEOTop on all valid input folder found
in the recursive check of input_folder:

2.1. User Documentation 29

gc3pie Documentation, Release 2.6.1

$ ggeotop -x /apps/geotop/bin/geotop_1_224_20120227_static ./input_folder

Example 2.

$ ggeotop --session SAMPLE_SESSION -w 24 -x /apps/geotop/bin/geotop_1_224_20120227_
→˓static ./input_folder

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of the --session
option in Introduction to session-based scripts). The command above creates the jobs, submits them, and finally prints
the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/50 (0.0%)
SUBMITTED 50/50 (100.0%)
TERMINATED 0/50 (0.0%)
TERMINATING 0/50 (0.0%)
total 50/50 (100.0%)

Calling ggeotop over and over again will result in the same jobs being monitored;

The -C option tells ggeotop to continue running until all jobs have finished running and the output files have been
correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/540 (0.0%)
SUBMITTED 0/50 (0.0%)
TERMINATED 50/50 (100.0%)
TERMINATING 0/50 (0.0%)
ok 50/50 (100.0%)
total 50/50 (100.0%)

Each job will be named after the folder name (e.g. 000002) (you could see this by passing the -l option to ggeotop).;
each of these jobs will fill the related input folder with the produced outputs.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Output files for ggeotop

Upon successful completion, the output directory of each ggeotop job contains:

• the out folder will contains what has been produced during the computation of the related job.

Example usage

This section contains commented example sessions with ggeotop.

Manage a set of jobs from start to end

In typical operation, one calls ggeotop with the -C option and lets it manage a set of jobs until completion.

30 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

So, to analyse all valid folders under input_folder, submitting 200 jobs simultaneously each of them requesting
2GB of memory and 8 hours of wall-clock time, one can use the following command-line invocation:

$ ggeotop -s example -C 120 -x
/apps/geotop/bin/geotop_1_224_20120227_static -w 8 input_folder

The -s example option tells ggeotop to store information about the computational jobs in the example.jobs
directory.

The -C 120 option tells ggeotop to update job state every 120 seconds; output from finished jobs is retrieved and
new jobs are submitted at the same interval.

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested parameter range has been
computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Using GC3Pie utilities

GC3Pie comes with a set of generic utilities that could be used as a complemet to the ggeotop command to better
manage a entire session execution.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

or:

gkill -s example job.16

gkill could also be used to cancel jobs in a given state

gkill -s example -l UNKNOWN

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

2.1. User Documentation 31

gc3pie Documentation, Release 2.6.1

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command does
just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session example, you would type

ginfo -s example job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running, and
when it was started:

$ ginfo -s example job.13
job.13

cores: 2
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:05 2012
Submitted to 'wsl' at Tue May 15 09:52:05 2012
RUNNING at Tue May 15 10:07:39 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/116613370683251353308673
lrms_jobname: GC3Pie_00002
original_exitcode: -1
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069259.18
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

RUNNING: 1337069259.18
SUBMITTED: 1337068325.26

unknown_iteration: 0
used_cputime: 1380
used_memory: 3382706

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -c -s example job.13
job.13

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/geotop/results/00002
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/geotop/results/00002'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032

(continues on next page)

32 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

lrms_jobname: GC3Pie_00002
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information

$ ginfo -c -s example job.13
job.13

arguments: 00002
changed: False
environment:
executable: geotop_static
executables: geotop_static
execution:

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/geotop/results/00002
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/geotop/results/00002'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: GC3Pie_00002
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

(continues on next page)

2.1. User Documentation 33

gc3pie Documentation, Release 2.6.1

(continued from previous page)

jobname: GC3Pie_00002
join: True
output_base_url: None
output_dir: /data/geotop/results/00002
outputs:

@output.list: file, , @output.list, None, None, None, None
ggeotop.log: file, , ggeotop.log, None, None, None, None

persistent_id: job.1698503
requested_architecture: x86_64
requested_cores: 2
requested_memory: 4
requested_walltime: 4
stderr: None
stdin: None
stdout: ggeotop.log
tags: APPS/EARTH/GEOTOP

The grosetta and gdocking scripts

GC3Apps provide two scripts to drive execution of applications (protocols, in Rosetta terminology) from the Rosetta
bioinformatics suite.

The purpose of grosetta and gdocking is to execute several concurrent runs of minirosetta or docking_protocol
on a set of input files, and collect the generated output. These runs are performed in parallel using every available
GC3Pie resource; you can of course control how many runs should be executed and select what output files you want
from each one.

The script grosetta is a relatively generic front-end that executes the minirosetta program by default (but a differ-
ent application can be chosen with the -x command-line option). The gdocking script is specialized for running
Rosetta’s docking_protocol program.

Introduction

The grosetta and gdocking execute several runs of minirosetta or docking_protocol on a set of input files, and
collect the generated output. These runs are performed in parallel, up to a limit that can be configured with the -J
command-line option. You can of course control how many runs should be executed and select what output files you
want from each one.

Note: The grosetta and gdocking scripts are very similar in usage. In the following, whatever is written about
grosetta applies to gdocking as well; the differences will be pointed out on a case-by-case basis.

In more detail, grosetta does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs into
memory. If the session directory does not exist, one will be created with empty contents.

2. Scans the input file names given on the command-line, and generates a number of identical computational jobs,
all running the same Rosetta program on the same set of input files. The objective is to compute a specified
number P of decoys of any given PDB file.

The number P of wanted decoys can be set with the --total-decoys option (see below). The option
--decoys-per-job can set the number of decoys that each computational job can compute; this should be

34 Chapter 2. Table of Contents

http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/

gc3pie Documentation, Release 2.6.1

a guessed based on the maximum allowed run time of each job and the time taken by the Rosetta protocol to
compute a single decoy.

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in step
2.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program grosetta exits when all jobs have run to completion, i.e., when the wanted number of decoys
have been computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be
resumed at a later stage by calling grosetta with exactly the same command-line options.

The gdocking program works in exactly the same way, with the important exception that gdocking uses a separate
Rosetta docking_protocol program invocation per input file.

Command-line invocation of grosetta

The grosetta script is based on GC3Pie’s session-based script model; please read also the Introduction to session-
based scripts section for an introduction to sessions and generic command-line options.

A grosetta command-line is constructed as follows:

1. The 1st argument is the flags file, containing options to pass to every executed Rosetta program;

2. then follows any number of input files (copied from your PC to the execution site);

3. then a literal colon character :;

4. finally, you can list any number of output file patterns (copied back from the execution site to your PC); wildcards
(e.g., *.pdb) are allowed, but you must enclose them in quotes. Note that:

• you can omit the output files: the default is "*.pdb" "*.sc" "*.fasc"

• if you omit the output files patterns, omit the colon as well

Example 1. The following command-line invocation uses grosetta to run minirosetta on the molecule
files 1bjpA.pdb, 1ca7A.pdb, and 1cgqA.pdb. The flags file (1st command-line argument) is a
text file containing options to pass to the actual minirosetta program. Additional input files are specified
on the command line between the flags file and the PDB input files.

$ grosetta flags alignment.filt query.fasta query.psipred_ss2 boinc_
→˓aaquery03_05.200_v1_3.gz boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.
→˓pdb 1cgqA.pdb

You can see that the listing of output patterns has been omitted,
so `grosetta`:command: will use the default and retrieve all
`*.pdb`:file:, `*.sc`:file: and `*.fasc`:file: files.

There will be a number of identical jobs being executed as a result of a grosetta or gdocking invocation; this
number depends on the ratio of the values given to options -P and -p:

-P NUM, --total-decoys NUM Compute NUM decoys per input file.

-p NUM, --decoys-per-job NUM Compute NUM decoys in a single job (default: 1).
This parameter should be tuned so that the running time of a sin-
gle job does not exceed the maximum wall-clock time (see the

2.1. User Documentation 35

http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.6.1

--wall-clock-time command-line option in Introduction to
session-based scripts).

If you omit -P and -p, they both default to 1, i.e., one job will be created (as in the example 1. above).

Example 2. The following command-line invocation will run 3 parallel instances of minirosetta, each of
which generates 2 decoys (save the last one, which only generates 1 decoy) of the molecule described in
file 1bjpA.pdb:

$ grosetta --session SAMPLE_SESSION --total-decoys 5 --decoys-per-job 2
→˓flags alignment.filt query.fasta query.psipred_ss2 boinc_aaquery03_05.200_
→˓v1_3.gz boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of
the --session option in Introduction to session-based scripts). The command above creates the jobs,
submits them, and finally prints the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/3 (0.0%)

RUNNING 0/3 (0.0%)
STOPPED 0/3 (0.0%)

SUBMITTED 3/3 (100.0%)
TERMINATED 0/3 (0.0%)
TERMINATING 0/3 (0.0%)

total 3/3 (100.0%)

Note that the status report counts the number of jobs in the session, not the total number of decoys being
generated. (Feel free to report this as a bug.)

Calling grosetta over and over again will result in the same jobs being monitored; to create new jobs, change
the command line and raise the value for -P or -p. (To completely erase an existing session and start over, use the
--new-session option, as per session-based script documentation.)

The -C option tells grosetta to continue running until all jobs have finished running and the output files have been
correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/3 (0.0%)

RUNNING 0/3 (0.0%)
STOPPED 0/3 (0.0%)

SUBMITTED 0/3 (0.0%)
TERMINATED 3/3 (100.0%)

TERMINATING 0/3 (0.0%)
ok 3/3 (100.0%)

total 3/3 (100.0%)

The three jobs are named 0--1, 2--3 and 4--5 (you could see this by passing the -l option to grosetta); each
of these jobs will create an output directory named after the job.

In general, grosetta jobs are named N--M with N and M being two integers from 0 up to the value specified with
option --total-decoys. Jobs generated by gdocking are instead named after the input file, with a .N--M
suffix added.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Note: The naming and contents of output files differ between grosetta and gdocking. Refer to the appropriate
section below!

36 Chapter 2. Table of Contents

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.6.1

Output files for grosetta

Upon successful completion, the output directory of each grosetta job contains:

• A copy of the input PDB files;

• Additional .pdb files named S_random string.pdb, generated by minirosetta during its run;

• A file score.sc;

• Files minirosetta.static.log, minirosetta.static.stdout.txt and minirosetta.
static.stderr.txt.

The minirosetta.static.log file contains the output log of the minirosetta execution. For each of the S_*.
pdb files above, a line like the following should be present in the log file (the file name and number of elapsed seconds
will of course vary!):

protocols.jd2.JobDistributor: S_1CA7A_1_0001 reported success in 124 seconds

The minirosetta.static.stdout.txt contains a copy of the minirosetta output log, plus the output of the
wrapper script. In case of successful minirosetta run, the last line of this file will read:

minirosetta.static: All done, exitcode: 0

Output files for gdocking

Execution of gdocking yields the following output:

• For each .pdb input file, a .decoys.tar file (e.g., for 1bjpa.pdb input, a 1bjpa.decoys.tar output
is produced), which contains the .pdb files of the decoys produced by gdocking.

• For each successful job, a .N–M directory: e.g., for the 1bjpa.1--2 job, a 1bjpa.1--2/ directory is
created, with the following content:

– docking_protocol.log: output of Rosetta’s docking_protocol program;

– docking_protocol.stderr.txt, docking_protocol.stdout.txt: obvoius meaning. The
“stdout” file contains a copy of the docking_protocol.log contents, plus the output from the wrap-
per script.

– docking_protocol.tar.gz: the .pdb decoy files produced by the job.

The following scheme summarizes the location of gdocking output files:

(directory where gdocking is run)/
|
+- file1.pdb Original input file
|
+- file1.N--M/ Directory collecting job outputs from job file1.N--M
| |
| +- docking_protocol.tar.gz
| +- docking_protocol.log
| +- docking_protocol.stderr.txt
| ... etc
|
+- file1.N--M.fasc FASC file for decoys N to M [1]
|
+- file1.decoys.tar tar archive of PDB file of all decoys
| generated corresponding to 'file1.pdb' [2]

(continues on next page)

2.1. User Documentation 37

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.6.1

(continued from previous page)

|
...

Let P be the total number of decoys (the argument to the -P option), and p be the number of decoys per job (argument
to the -p option). Then you would get in a single directory:

1. (P/p) different .fasc files, corresponding to the (P/p) jobs;

2. P different .pdb files, named a_file.0.pdb to a_file.(P-1).pdb

Example usage

This section contains commented example sessions with grosetta. All the files used in this example are available
in the GC3Pie Rosetta test directory (courtesy of Lars Malmstroem).

Manage a set of jobs from start to end

In typical operation, one calls grosetta with the -C option and lets it manage a set of jobs until completion.

So, to generate one decoy from a set of given input files, one can use the following command-line invocation:

$ grosetta -s example -C 120 -P 1 -p 1 \
flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb \
3c6vA.pdb

The -s example option tells grosetta to store information about the computational jobs in the example.jobs
directory.

The -C 120 option tells grosetta to update job state every 120 seconds; output from finished jobs is retrieved and
new jobs are submitted at the same interval.

The -P 1 and -p 1 options set the total number of decoys to compute and the maximum number of decoys that a
single computational job can handle. These values can be arbitrarily high (however the p value should be such that the
computational job can actually compute that many decoys in the allotted wall-clock time).

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested number of decoys (set by the
-P option) has been computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

38 Chapter 2. Table of Contents

http://github.com/uzh/gc3pie/gc3apps/rosetta/test
http://lars.malmstroem.net/

gc3pie Documentation, Release 2.6.1

Managing a session by repeated grosetta invocation

We now show how one can obtain the same result by calling grosetta multiple times (there could be hours of
interruption between one invocation and the next one).

Note: This is not the typical mode of operating with grosetta, but may still be useful in certain settings.

1. Create a session (1 job only, since no -P option is given); the session name is chosen with the -s (short for
--session) option. You should take care of re-using the same session name with subsequent commands.

$ grosetta -s example flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

2. Now we call grosetta again, and request that 3 decoys be computed starting from a single PDB file
(--total-decoys 3 on the command line). Since we are submitting a single PDB file, the 3 decoys will be
computed all in a single run, so the --decoys-per-job option will have value 3.

$ grosetta -s example --total-decoys 3 --decoys-per-job 3 \
flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 3c6vA.pdb

Status of jobs in the 'example.csv' session:
SUBMITTED 3/3 (100.0%)

Note that 3 jobs were submitted: grosetta interprets the --total-decoys option globally, and adds one
job to compute the 2 missing decoys from the file set from step 1. (This is currently a limitation of grosetta)

From here on, one could simply run grosetta -C 120 and let it manage the session until completion of
all jobs, as in the example Manage a set of jobs from start to end above. For the sake of showing how the use
of several command-line options of grosetta, we shall further show how manage the session by repeated
separate invocations.

3. Next step is to monitor the session, so we add the command-line option -l which tells grosetta to list all the
jobs with their status. Also note that we keep the -s example option to tell grosetta that we would like
to operate on the session named example.

All non-option arguments can be omitted: as long as the total number of decoys is unchanged, they’re not
needed.

$ grosetta -s example -l
Decoys Nr. State (JobID) Info
==
0--1 RUNNING (job.766) Running at Mon Dec 20 19:32:08 2010
2--3 RUNNING (job.767) Running at Mon Dec 20 19:33:23 2010
0--2 RUNNING (job.768) Running at Mon Dec 20 19:33:43 2010

Without the -l option only a summary of job statuses is presented:

$ grosetta -s example
Status of jobs in the 'grosetta.csv' session:
RUNNING 3/3 (100.0%)

2.1. User Documentation 39

gc3pie Documentation, Release 2.6.1

Alternatively, we can keep the command line arguments used in the previous invocation: they will be ignored
since they do not add any new job (the number of decoys to compute is always 1):

$ grosetta -s example -l flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb \
3c6vA.pdb

Decoys Nr. State (JobID) Info
==
0--1 RUNNING (job.766)
2--3 RUNNING (job.767) Running at Mon Dec 20 19:33:23 2010
0--2 RUNNING (job.768) Running at Mon Dec 20 19:33:43 2010

Note that the -l option is available also in combination with the -C option (see Manage a set of jobs from start
to end).

4. Calling grosetta again when jobs are done triggers automated download of the results:

$../grosetta.py
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/minirosetta.static.
→˓stdout.txt
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/minirosetta.static.
→˓log
...
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/.arc/input
Status of jobs in the 'grosetta.csv' session:
TERMINATED 1/1 (100.0%)
ok 1/1 (100.0%)

The -l option comes handy to see what directory contains the job output:

$ grosetta -l
Decoys Nr. State (JobID) Info
==
0--1 TERMINATED (job.766) Output retrieved into directory '/tmp/0--1'

The gcrypto script

GC3Apps provide a script drive execution of multiple gnfs-cmd jobs each of them with a different param-
eter set. Allotogehter they form a single crypto simulation of a large parameter space. It uses the generic
gc3libs.cmdline.SessionBasedScript framework.

The purpose of gcrypto is to execute several concurrent runs of gnfs-cmd on a parameter set. These runs are
performed in parallel using every available GC3Pie resource; you can of course control how many runs should be
executed and select what output files you want from each one.

Introduction

Like in a for-loop, the gcrypto driver script takes as input three mandatory arguments:

1. RANGE_START: initial value of the range (e.g., 800000000)

40 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

2. RANGE_END: final value of the range (e.g., 1200000000)

3. SLICE: extent of the range that will be examined by a single job (e.g., 1000)

For example:

gcrypto 800000000 1200000000 1000

will produce 400000 jobs; the first job will perform calculations on the range 800000000 to 800000000+1000, the 2nd
one will do the range 800001000 to 800002000, and so on.

Inputfile archive location (e.g. lfc://lfc.smscg.ch/crypto/lacal/input.tgz) can be specified with the ‘-i’ option. Otherwise
a default filename ‘input.tgz’ will be searched in current directory.

Job progress is monitored and, when a job is done, output is retrieved back to submitting host in folders named:
RANGE_START + (SLICE * ACTUAL_STEP) Where ACTUAL_STEP correspond to the position of the job in
the overall execution.

The gcrypto command keeps a record of jobs (submitted, executed and pending) in a session file (set name with the
‘-s’ option); at each invocation of the command, the status of all recorded jobs is updated, output from finished jobs is
collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input files are
added to the command line.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; gcrypto
will delay submission of newly-created jobs so that this limit is never exceeded.

The gcrypto execute several runs of gnfs-cmd on a parameter set, and collect the generated output. These runs
are performed in parallel, up to a limit that can be configured with the -J command-line option. You can of course
control how many runs should be executed and select what output files you want from each one.

In more detail, gcrypto does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs into
memory. If the session directory does not exist, one will be created with empty contents.

2. Divide the initial parameter range, given in the command-line, into chunks taking the -J value as a reference.
So from a coomand line argument like the following:

$ gcrypto 800000000 1200000000 1000 -J 200

gcrypto will generate an initial chunks of 200 jobs starting from the initial range 800000000 incrementing
of 1000. All jobs will run gnfs-cmd on a specific parameter set (e.g. 800000000, 800001000, 800002000,
. . .). gcrypto will keep constant the number of simulatenous jobs running retrieving those terminated and
submitting new ones untill the whole parameter range has been computed.

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in step
2.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see the -l
command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program gcrypto exits when all jobs have run to completion, i.e., when the whole paramenter range has
been computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be resumed
at a later stage by calling gcrypto with exactly the same command-line options.

gcrypto requires a number of default input files common to every submited job. This list of input files is automati-
cally fetched by gcrypto from a default storage repository. Those files are:

2.1. User Documentation 41

gc3pie Documentation, Release 2.6.1

gnfs-lasieve6
M1019
M1019.st
M1037
M1037.st
M1051
M1051.st
M1067
M1067.st
M1069
M1069.st
M1093
M1093.st
M1109
M1109.st
M1117
M1117.st
M1123
M1123.st
M1147
M1147.st
M1171
M1171.st
M8e_1200
M8e_1500
M8e_200
M8e_2000
M8e_2500
M8e_300
M8e_3000
M8e_400
M8e_4200
M8e_600
M8e_800
tdsievemt

When gcrypto has to be executed with a different set of input files, an additional command line argument
--input-files could be used to specify the locatin of a tar.gz archive containing the input files that gnfs-cmd
will expect. Similarly, when a different version of gnfs-cmd command needs to be used, the command line argument
--gnfs-cmd could be used to specify the location of the gnfs-cmd to be used.

Command-line invocation of gcrypto

The gcrypto script is based on GC3Pie’s session-based script model; please read also the Introduction to session-
based scripts section for an introduction to sessions and generic command-line options.

A gcrypto command-line is constructed as follows: Like a for-loop, the gcrypto driver script takes as input three
mandatory arguments:

1. RANGE_START: initial value of the range (e.g., 800000000)

2. RANGE_END: final value of the range (e.g., 1200000000)

3. SLICE: extent of the range that will be examined by a single job (e.g., 1000)

Example 1. The following command-line invocation uses gcrypto to run gnfs-cmd on the parameter set ranging
from 800000000 to 1200000000 with an increment of 1000.

42 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

$ gcrypto 800000000 1200000000 1000

In this case gcrypto will use the default values for determine the chunks size from the default value of the -J option
(default value is 50 simulatenous jobs).

Example 2.

$ gcrypto --session SAMPLE_SESSION -c 4 -w 4 -m 8 800000000 1200000000 1000

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of the --session
option in Introduction to session-based scripts). The command above creates the jobs, submits them, and finally prints
the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/50 (0.0%)
SUBMITTED 50/50 (100.0%)
TERMINATED 0/50 (0.0%)
TERMINATING 0/50 (0.0%)
total 50/50 (100.0%)

Note that the status report counts the number of jobs in the session, not the total number of jobs that would correspond
to the whole parameter range. (Feel free to report this as a bug.)

Calling gcrypto over and over again will result in the same jobs being monitored;

The -C option tells gcrypto to continue running until all jobs have finished running and the output files have been
correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/400k (0.0%)
RUNNING 0/400k (0.0%)
STOPPED 0/400k (0.0%)
SUBMITTED 0/400k (0.0%)
TERMINATED 50/400k (100.0%)
TERMINATING 0/400k (0.0%)
ok 400k/400k (100.0%)
total 400k/400k (100.0%)

Each job will be named after the parameter range it has computed (e.g. 800001000, 800002000, . . .) (you could see
this by passing the -l option to gcrypto); each of these jobs will create an output directory named after the job.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Output files for gcrypto

Upon successful completion, the output directory of each gcrypto job contains:

• a number of .tgz files each of them correspondin to a step within the execution of the gnfs-cmd command.

• A log file named gcrypto.log containing both the stdout and the stderr of the gnfs-cmd execution.

Note: The number of .tgz files may depend on whether the execution of the gnfs-cmd command has completed
or not (e.g. jobs may be killed by the batch system when exausting requested resources)

2.1. User Documentation 43

gc3pie Documentation, Release 2.6.1

Example usage

This section contains commented example sessions with gcrypto.

Manage a set of jobs from start to end

In typical operation, one calls gcrypto with the -C option and lets it manage a set of jobs until completion.

So, to compute a whole parameter range from 800000000 to 1200000000 with an increment of 1000, submitting 200
jobs simultaneously each of them requesting 4 computing cores, 8GB of memory and 4 hours of wall-clock time, one
can use the following command-line invocation:

$ gcrypto -s example -C 120 -J 200 -c 4 -w 4 -m 8 800000000 1200000000 1000

The -s example option tells gcrypto to store information about the computational jobs in the example.jobs
directory.

The -C 120 option tells gcrypto to update job state every 120 seconds; output from finished jobs is retrieved and
new jobs are submitted at the same interval.

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested parameter range has been
computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Using GC3Pie utilities

GC3Pie comes with a set of generic utilities that could be used as a complemet to the gcrypto command to better
manage a entire session execution.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

or:

gkill -s example job.16

gkill could also be used to cancel jobs in a given state

gkill -s example -l UNKNOWN

44 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command does
just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session example, you would type

ginfo -s example job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running, and
when it was started:

$ ginfo -s example job.13
job.13

cores: 2
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:05 2012
Submitted to 'wsl' at Tue May 15 09:52:05 2012
RUNNING at Tue May 15 10:07:39 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/116613370683251353308673
lrms_jobname: LACAL_800001000
original_exitcode: -1
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069259.18
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

RUNNING: 1337069259.18
SUBMITTED: 1337068325.26

unknown_iteration: 0
used_cputime: 1380
used_memory: 3382706

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -c -s example job.13
job.13

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/crypto/results/example.out/8000001000
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
(continues on next page)

2.1. User Documentation 45

gc3pie Documentation, Release 2.6.1

(continued from previous page)

Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/crypto/results/example.out/8000001000'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: LACAL_800001000
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information:

$ ginfo -c -s example job.13
job.13

arguments: 800000800, 100, 2, input.tgz
changed: False
environment:
executable: gnfs-cmd
executables: gnfs-cmd
execution:

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/crypto/results/example.out/8000001000
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/crypto/results/example.out/8000001000'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: LACAL_800001000
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13

(continues on next page)

46 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

TERMINATING: 1337069259.18
unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

inputs:
srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/gnfs-cmd_20120406: gnfs-

→˓cmd
srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/lacal_input_files.tgz:

→˓input.tgz
jobname: LACAL_800000900
join: True
output_base_url: None
output_dir: /data/crypto/results/example.out/8000001000
outputs:

@output.list: file, , @output.list, None, None, None, None
gcrypto.log: file, , gcrypto.log, None, None, None, None

persistent_id: job.1698503
requested_architecture: x86_64
requested_cores: 2
requested_memory: 4
requested_walltime: 4
stderr: None
stdin: None
stdout: gcrypto.log
tags: APPS/CRYPTO/LACAL-1.0

The GC3Utils software

The GC3Utils are lower-level commands, provided to perform common operations on jobs, regardless of their type or
the application they run.

For instance, GC3Utils provide commands to obtain the list and status of computational resources (gservers); to
clear the list of jobs from old and failed ones (gclean); to get detailed information on a submitted job (ginfo,
mainly for debugging purposes).

This chapter is a tutorial for the GC3Utils command-line utilities.

If you find a technical term whose meaning is not clear to you, please look it up in the Glossary. (But feel free to ask
on the GC3Pie mailing list if it’s still unclear!)

Contents

• The GC3Utils software

– gsession: manage sessions

– gstat: monitor the status of submitted jobs

– gtail: peeking at the job output and error report

– gkill: cancel a running job

– gget: retrieve the output of finished jobs

– gclean: remove a completed job from the status list

2.1. User Documentation 47

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.6.1

– gresub: re-submit a failed job

– gservers: list available resources

– ginfo: accessing low-level details of a job

– gselect: select job ids from from a session

– gcloud: manage VMs created by the EC2 backend

gsession: manage sessions

All jobs managed by one of the GC3Pie scripts are grouped into sessions; information related of a session is stored into
a directory. The gsession command allows you to show the jobs related to a specific session, to abort the session
or to completely delete it.

The gsession accept two mandatory arguments: command and session. command must be one of:

list list jobs related to the session.

log show the session history.

abort kill all jobs related to the session.

delete abort the session and delete the session directory from disk.

For instance, if you want to check the status of the main tasks of a session, just run:

$ gsession list SESSION_DIRECTORY
+--------------------------------+---------------------------+-------+----------------
→˓-----------------+
| JobID | Job name | State | Info
→˓ |
+--------------------------------+---------------------------+-------+----------------
→˓-----------------+
| ParallelTaskCollection.1140527 | ParallelTaskCollection-N1 | NEW | NEW at Fri Feb
→˓22 16:39:34 2013 |
+--------------------------------+---------------------------+-------+----------------
→˓-----------------+

This command will only show the top-level tasks, e.g. the main tasks created by the GC3 script. If you want to see all
the tasks related to the session run the command with the option -r:

$ gsession list SESSION_DIRECTORY -r
+---+---------------------------+------------+--
→˓--------------------------------------+
| JobID | Job name | State |
→˓Info |
+---+---------------------------+------------+--
→˓--------------------------------------+
| ParallelTaskCollection.1140527 | ParallelTaskCollection-N1 | NEW |
→˓NEW at Fri Feb 22 16:39:34 2013 |
| WarholizeWorkflow.1140528 | WarholizedWorkflow | RUNNING |
→˓RUNNING at Fri Feb 22 16:39:34 2013 |
| GrayScaleConvertApplication.1140529 | | TERMINATED |
→˓TERMINATED at Fri Feb 22 16:39:25 2013 |
| TricolorizeMultipleImages.1140530 | Warholizer_Parallel | NEW |
→˓ |
| TricolorizeImage.1140531 | TricolorizeImage | NEW |
→˓ | (continues on next page)

48 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

| CreateLutApplication.1140532 | | NEW |
→˓ |
| TricolorizeImage.1140533 | TricolorizeImage | NEW |
→˓ |
| CreateLutApplication.1140534 | | NEW |
→˓ |
| TricolorizeImage.1140535 | TricolorizeImage | NEW |
→˓ |
| CreateLutApplication.1140536 | | NEW |
→˓ |
| TricolorizeImage.1140537 | TricolorizeImage | NEW |
→˓ |
| CreateLutApplication.1140538 | | NEW |
→˓ |
+---+---------------------------+------------+--
→˓--------------------------------------+

To have the full history of the session run gsession log:

$ gsession log SESSION_DIRECTORY
Feb 22 16:39:01 GrayScaleConvertApplication.1140529: Submitting to 'hobbes' at Fri
→˓Feb 22 16:39:01 2013
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: RUNNING
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: SUBMITTED
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: Submitted to 'hobbes' at Fri Feb
→˓22 16:39:08 2013
Feb 22 16:39:08 WarholizeWorkflow.1140528: SUBMITTED
Feb 22 16:39:24 GrayScaleConvertApplication.1140529: TERMINATING
Feb 22 16:39:25 WarholizeWorkflow.1140528: RUNNING
Feb 22 16:39:25 ParallelTaskCollection.1140527: RUNNING
Feb 22 16:39:25 GrayScaleConvertApplication.1140529: Final output downloaded to
→˓'Warholized.lena.jpg'
Feb 22 16:39:25 GrayScaleConvertApplication.1140529: TERMINATED
Feb 22 16:39:34 WarholizeWorkflow.1140528: NEW
Feb 22 16:39:34 ParallelTaskCollection.1140527: NEW
Feb 22 16:39:34 WarholizeWorkflow.1140528: RUNNING

To abort a session, run the gsession abort command:

$ gsession abort SESSION_DIRECTORY

This will kill all the running jobs and retrieve the results of the terminated jobs, but will leave the session directory
untouched. To also delete the session directory, run gsession delete:

$ gsession delete SESSION_DIRECTORY

gstat: monitor the status of submitted jobs

To see the status of all the jobs you have submitted, use the gstat command. Typing:

gstat -s SESSION

will print to the screen a table like the following:

2.1. User Documentation 49

gc3pie Documentation, Release 2.6.1

Job ID Status
====================
job.12 TERMINATED
job.15 SUBMITTED
job.16 RUNNING
job.17 RUNNING
job.23 NEW

Note: If you have never submitted any job, or if you have cleared your job list with the gclean command, then
gstat will print nothing to the screen!

A job can be in one and only one of the following states:

NEW

The job has been created but not yet submitted: it only exists on the local disk.

RUNNING

The job is currently running – there’s nothing to do but wait.

SUBMITTED

The job has been sent to a compute resource for execution – it should change to RUNNING status eventu-
ally.

STOPPED

The job was sent to a remote cluster for execution, but it is stuck there for some unknown reason. There
is no automated procedure in this case: the best thing you can do is to contact the systems administrator
to determine what has happened.

UNKNOWN

Job info is not found, possibly because the remote resource is currently not accessible due to a network
error, a misconfiguration or because the remote resource is not available anymore. When the root cause is
fixed, and the resource is available again, the status of the job should automatically move to another state.

TERMINATED

The job has finished running; now there are three things you can do:

1. Use the gget command to get the command output files back from the remote execution cluster.

2. Use the gclean command to remove this job from the list. After issuing gclean on a job, any
information on it is lost, so be sure you have retrieved any interesting output with gget before!

3. If something went wrong during the execution of the job (it did not complete its execution or -
possibly- it did not even start), you can use the ginfo command to try to debug the problem.

The list of submitted jobs persists from one session to the other: you can log off, shut your computer down, then turn
it on again next day and you will see the same list of jobs.

Note: Completed jobs persist in the gstat list until they are cleared off with the gclean command.

50 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

gtail: peeking at the job output and error report

Once a job has reached RUNNING status (check with gstat), you can also monitor its progress by looking at the last
lines in the job output and error stream.

An example might clarify this: assume you have submitted a long-running computation as job.16 and you know from
gstat that it got into RUNNING state; then to take a peek at what this job is doing, you issue the following command:

gtail job.16

This would produce the following output, from which you can deduce how far GAMESS has progressed into the
computation:

RECOMMEND NRAD ABOVE 50 FOR ZETA'S ABOVE 1E+4

RECOMMEND NRAD ABOVE 75 FOR ZETA'S ABOVE 1E+5

RECOMMEND NRAD ABOVE 125 FOR ZETA'S ABOVE 1E+6

DFT IS SWITCHED OFF, PERFORMING PURE SCF UNTIL SWOFF THRESHOLD IS REACHED.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

1 0 0 -1079.0196780290 -1079.0196780290 0.343816910 1.529879639

* * * INITIATING DIIS PROCEDURE * * *

2 1 0 -1081.1910665431 -2.1713885141 0.056618918 0.105322104

3 2 0 -1081.2658345285 -0.0747679855 0.019565324 0.044813607

By default, gtail only outputs the last 10 lines of a job output/error stream. To see more, use the command line
option -n; for example, to see the last 25 lines of the output, issue the command:

gtail -n 25 job.16

The command gtail is especially useful for long computations: you can see how far a job has gotten and, e.g., cancel
it if it’s gotten stuck into an endless/unproductive loop.

To “keep an eye” over what a job is doing, you can add the -f option to gtail: this will run gtail in “follow”
mode, i.e., gtail will continue to display the contents of the job output and update it as time passes, until you hit
Ctrl+C to interrupt it.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

2.1. User Documentation 51

http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.6.1

gget: retrieve the output of finished jobs

Once a job has reached RUNNING status (check with gstat), you can retrieve its output files with the gget com-
mand. For instance, to download the output files of job.15 you would use:

gget job.15

This command will print out a message like:

Job results successfully retrieved in '/path/to/some/directory'

If you are not running the gget command on your computer, but rather on a shared front-end like ocikbgtw, you can
copy+paste the path within quotes to the sftp command to get the files to your usual workstation. For example, you
can run the following command in a terminal on your computer to get the output files back to your workstation:

sftp ocikbgtw:'/path/to/some/directory'

This will take you to the directory where the output files have been stored.

gclean: remove a completed job from the status list

Jobs persist in the gstat list until they are cleared off; you need to use the gclean command for that.

Just call the gclean command followed by the job identifier job.NNN. For example:

gclean job.23

In normal operation, you can only remove jobs that are in the TERMINATED status; if you want to force gclean to
remove a job that is not in any one of those states, just add -f to the command line.

gresub: re-submit a failed job

In case a job failed for accidental causes (e.g., the site where it was running went unexpectedly down), you can
re-submit it with the gresub command.

Just call gresub followed by the job identifier job.NNN. For example:

gresub job.42

Resubmitting a job that is not in a terminal state (i.e., TERMINATED) results in the job being killed (as with gkill)
before being submitted again. If you are unsure what state a job is in, check it with gstat.

gservers: list available resources

The gservers command prints out information about the configured resources. For each resource, a summary of
the information recorded in the configuration file and the current resource status is printed. For example:

$ gservers
+--+
| smscg |
+==+
| Frontend host name / frontend giis.smscg.ch |
| Access mode / type arc0 |

(continues on next page)

52 Chapter 2. Table of Contents

http://kb.iu.edu/data/akqg.html

gc3pie Documentation, Release 2.6.1

(continued from previous page)

| Authorization name / auth smscg |
| Accessible? / updated 1 |
| Total number of cores / ncores 4000 |
| Total queued jobs / queued 3475 |
| Own queued jobs / user_queued 0 |
| Own running jobs / user_run 0 |
| Max cores per job / max_cores_per_job 256 |
| Max memory per core (MB) / max_memory_per_core 2000 |
| Max walltime per job (minutes) / max_walltime 1440 |
+--+

The meaning of the printed fields is as follows:

• The title of each box is the “resource name”, as you would write it after the -r option to gsub.

• Access mode / type: it is the kind of software that is used for accessing the resource; consult Section Configura-
tion File for more information about resource types.

• Authorization name / auth: this is paired with the Access mode / type, and identifies a section in the configu-
ration file where authentication information for this resource is stored; see Section Configuration File for more
information.

• Accessible? / updated: whether you are currently authorized to access this resource; note that if this turns False
or 0 for resources that you should have access to, then something is wrong either with the state of your system,
or with the resource itself. (The procedure on how to diagnose this is too complex to list here; consult your
friendly systems administrator :-))

• Total number of cores: the total number of cores present on the resource. Note this can vary over time as cluster
nodes go in and out of service: computers break, then are repaired, then break again, etc.

• Total queued jobs: number of jobs (from all users) waiting to be executed on the remote compute cluster.

• Own queued jobs: number of jobs (submitted by you) waiting to be executed on the remote compute cluster.

• Own running jobs: number of jobs (submitted by you) currently executing on the remote compute cluster.

• Max cores per job: the maximum number of cores that you can request for a single computational job on this
resource.

• Max memory per core: maximum amount of memory (per core) that you can request on this resource. The
amount shows the maximum requestable memory in MB.

• Max walltime per job: maximum duration of a computational job on this resource. The amount shows the
maximum time in seconds.

The whole point of GC3Utils is to abstract job submission and management from detailed knowledge of the resources
and their hardware and software configuration, but it is sometimes convenient and sometimes necessary to get into this
level of detail. . .

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command does
just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session TEST1, you would type:

ginfo -s TEST1 job.13

2.1. User Documentation 53

gc3pie Documentation, Release 2.6.1

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running, and
when it was started:

$ ginfo -s XXX job.13
job.13

execution_targets: hera.wsl.ch
log:

SUBMITTED at Wed Mar 7 17:40:07 2012
Submitted to 'smscg' at Wed Mar 7 17:40:07 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/593513311384071771546195
resource_name: smscg
state_last_changed: 1331138407.33
timestamp:

SUBMITTED: 1331138407.33

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -s TEST1 job.13
job.13

cores: 1
download_dir: /home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01
execution_targets: idgc3grid01.uzh.ch
log:

SUBMITTED at Wed Mar 7 15:52:37 2012
Submitted to 'idgc3grid01' at Wed Mar 7 15:52:37 2012
TERMINATING at Wed Mar 7 15:54:52 2012
Final output downloaded to '/home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/

→˓gc3apps/gamess/exam01'
TERMINATED at Wed Mar 7 15:54:53 2012
Execution of gamess terminated normally wed mar 7 15:52:42 2012

lrms_jobid: gsiftp://idgc3grid01.uzh.ch:2811/jobs/2938713311319571678156670
lrms_jobname: exam01
original_exitcode: 0
queue: all.q
resource_name: idgc3grid01
state_last_changed: 1331132093.18
stderr_filename: exam01.out
stdout_filename: exam01.out
timestamp:

SUBMITTED: 1331131957.49
TERMINATED: 1331132093.18
TERMINATING: 1331132092.74

used_cputime: 0
used_memory: 492019
used_walltime: 60

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information:

$ ginfo -c -s TEST1 job.13
job.13

application_tag: gamess
arguments: exam01.inp

(continues on next page)

54 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

changed: False
environment:
executable: /$GAMESS_LOCATION/nggms
execution:

_arc0_state_last_checked: 1331138407.33
_exitcode: None
_signal: None
_state: SUBMITTED
execution_targets: hera.wsl.ch
log:

SUBMITTED at Wed Mar 7 17:40:07 2012
Submitted to 'smscg' at Wed Mar 7 17:40:07 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/593513311384071771546195
resource_name: smscg
state_last_changed: 1331138407.33
timestamp:

SUBMITTED: 1331138407.33
inp_file_path: test/data/exam01.inp
inputs:

file:///home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/test/data/
→˓exam01.inp: exam01.inp

job_name: exam01
jobname: exam01
join: True
output_base_url: None
output_dir: /home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01
outputs:

exam01.dat: file, , exam01.dat, None, None, None, None
exam01.out: file, , exam01.out, None, None, None, None

persistent_id: job.33998
requested_architecture: None
requested_cores: 1
requested_memory: 2
requested_walltime: 8
stderr: None
stdin: None
stdout: exam01.out
tags: APPS/CHEM/GAMESS-2010
verno: None

gselect: select job ids from from a session

The gselect command allows you to select Job IDs from a GC3Pie session that satisfy the selected criteria. This
command is usually used in combination with gresub, gkill, ginfo, gget or gclean, for instance:

$ gselect -l STOPPED | xargs gresub

The output of this command is a list of Job IDs, one per line. The criteria specified by command-line options will be
AND’ed together, i.e., a job must satisfy all of them in order to be selected.

You can select a job based on the following criteria:

JobID regexp

Use option –jobid REGEXP to select jobs whose ID matches the supplied regular expression (case insen-
sitive)

2.1. User Documentation 55

gc3pie Documentation, Release 2.6.1

Job state

Use option –state STATE[,STATE. . .] to select jobs in one of the specified states, for instance to select
jobs in either STOPPED or SUBMITTED state, run gselect –state STOPPED,SUBMITTED.

exit status

You can select jobs that terminated with exit status equal to 0 with –ok option. To select failed jobs instead
(exit status different from 0), use option –failed

Submission time

Use option –submitted-before DATE and –submitted-after DATE to select jobs submitted before or
after a specific date. DATE must be in a human readable format recognized by the parsedatetime
<https://pypi.python.org/pypi/parsedatetime/> module, for instance in 2 hours, yesterday or 10 November
2014, 1pm.

gcloud: manage VMs created by the EC2 backend

The gcloud command allows you to show and manage VMs created by the EC2 backend.

To show a list of VMs currently running on the EC2 resources correctly configured run:

$ gcloud list
====================================
VMs running on EC2 resource `hobbes`
====================================

+------------+---------+---------------+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---------------+-------------+--------------+---------+
| i-0000053e | running | 130.60.193.45 | 1 | ami-00000035 | antonio |
+------------+---------+---------------+-------------+--------------+---------+

This command will show various information, if available, including the number of jobs currently running (or in
TERMINATED state) on those VM, so that you can easily identify if there is a VM which is not used by any of yours
script and you can safely terminate it.

If you want to terminate a VM run the gcloud terminate command. In this case, however, you also have to specify the
name of the resource with the option -r, and the ID of the VM you want to terminate:

$ gcloud terminate -r hobbes i-0000053e

An empty output is a signal that the VM has been terminated.

The EC2 backend keeps track of all the VM it created, so that if a VM is not needed anymore it is able to terminate
it automatically. However, sometimes you may need to keep a VM up&running and thus you need to tell the EC2
backend to ignore that VM.

This is possible with the gcloud forget command. You must supply the correct resource name with -r
RESOURCE_NAME and a valid VM ID, and if the command succeeds then the VM will never be used by the EC2
backend. Please note also that after running gcloud forget, the VM will not be shown in the output of gcloud list.

The following example will explain the behavior:

$ gcloud list -r hobbes

====================================
VMs running on EC2 resource `hobbes`

(continues on next page)

56 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

====================================

+------------+---------+---------------+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---------------+-------------+--------------+---------+
| i-00000540 | pending | 130.60.193.45 | N/A | ami-00000035 | antonio |
+------------+---------+---------------+-------------+--------------+---------+

then we run gcloud forget:

$ gcloud forget -r hobbes i-00000540

and we run again gcloud list:

$ gcloud list -r hobbes

====================================
VMs running on EC2 resource `hobbes`
====================================

no known VMs are currently running on this resource.

You can also create a new VM using the default settings using the gcloud run command. In this case too you have to
specify the -r command line option. The output of this command contains some basic information about the created
VM:

$ gcloud run -r hobbes
+------------+---------+---+-------------+--
→˓------------+---------+
| id | state | public ip | Nr. of jobs |
→˓ image id | keypair |
+------------+---------+---+-------------+--
→˓------------+---------+
| i-00000541 | pending | server-4e68ebc4-ea52-45ff-82d0-79699300b323 | N/A |
→˓ami-00000035 | antonio |
+------------+---------+---+-------------+--
→˓------------+---------+

Please note that while the VM is still in pending state, the value of the public ip field may be meaningless. A successive
run of gcloud list should show you the correct public ip.

Troubleshooting GC3Pie

This page lists a number of errors and issues that you might run into, together with their solution. Please use the
GC3Pie mailing list for further help and for any problem not reported here!

Each section covers a different Python error; the section is named after the error name appearing in the last line of the
Python traceback. (See section What is a Python traceback? below)

Contents

• Troubleshooting GC3Pie

– What is a Python traceback?

2.1. User Documentation 57

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.6.1

– Common errors using GC3Pie

* AttributeError: module object has no attribute StringIO

* DistributionNotFound

* ImportError: No module named pstats

* NoResources: Could not initialize any computational resource - please check log and configuration
file.

* ValueError: I/O operation on closed file

– ValueError: Expected version spec in . . .

What is a Python traceback?

A traceback is a long Python error message, detailing the call stack in the code that lead to a specific error condition.

Tracebacks always look like this one (the number of lines printed, the files involved and the actual error message will,
of course, vary):

Traceback (most recent call last):
File "/home/mpackard/gc3pie/bin/gsub", line 9, in <module>
load_entry_point('gc3pie==1.0rc7', 'console_scripts', 'gsub')()

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/
→˓gc3utils/frontend.py", line 137, in main

import gc3utils.commands
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/
→˓gc3utils/commands.py", line 31, in <module>

import cli.app
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/
→˓app.py", line 37, in <module>

from cli.util import ifelse, ismethodof
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/
→˓util.py", line 28, in <module>

BaseStringIO = StringIO.StringIO
AttributeError: 'module' object has no attribute 'StringIO'

Let’s analyize how a traceback is formed, top to bottom.

A traceback is always started by the line:

Traceback (most recent call last):

Then follow a number of line pairs like this one:

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/
→˓gc3utils/frontend.py", line 137, in main
import gc3utils.commands

The first line shows the file name and the line number where the program stopped; the second line displays the
instruction that Python was executing when the error occurred. We shall always omit this part of the traceback in the
listings below.

Finally, the traceback ends with the error message on the last line:

AttributeError: 'module' object has no attribute 'StringIO'

58 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

Just look up this error message in the section headers below; if you cannot find any relevant section, please write to
the GC3Pie mailing list for help.

Common errors using GC3Pie

This section section lists Python errors that may happen when using GC3Pie; each section is named after the error
name appearing in the last line of the Python traceback. (See section What is a Python traceback? above.)

If you get an error that is not listed here, please get in touch via the GC3Pie mailing list.

AttributeError: module object has no attribute StringIO

This error:

Traceback (most recent call last):
...
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/
→˓util.py",
line 28, in <module>

BaseStringIO = StringIO.StringIO
AttributeError: 'module' object has no attribute 'StringIO'

is due to a conflicts of the pyCLI library (prior to version 2.0.3) and the Debian/Ubuntu package *python-stats*

There are three ways to get rid of the error:

1. Uninstall the *python-stats* package <python-stats> (run the command apt-get remove
python-stats as user root)

2. Upgrade pyCLI to version 2.0.3 at least.

3. Upgrade GC3Pie, which will force an upgrade of pyCLI.

DistributionNotFound

If you get this error:

Traceback (most recent call last):
...

pkg_resources.DistributionNotFound: gc3pie==1.0rc2

It usually means that you didn’t run source ../bin/activate; ./setup.py develop when upgrading
GC3Pie.

Please re-do the steps in the GC3Pie Upgrade instructions to fix the error.

ImportError: No module named pstats

This error only occurs on Debian and Ubuntu GNU/Linux:

Traceback (most recent call last):
File ".../pyCLI-2.0.2-py2.6.egg/cli/util.py", line 19, in <module>

import pstats
ImportError: No module named pstats

2.1. User Documentation 59

mailto:gc3pie@googlegroups.com
mailto:gc3pie@googlegroups.com
http://pypi.python.org/pypi/pyCLI

gc3pie Documentation, Release 2.6.1

To solve the issue: install the *python-profiler* package <python-profiler>:

apt-get install python-profiler # as `root` user

NoResources: Could not initialize any computational resource - please check log and configuration
file.

This error:

Traceback (most recent call last):
...
File ".../src/gc3libs/core.py", line 150, in submit
raise gc3libs.exceptions.NoResources("Could not initialize any computational

→˓resource"
gc3libs.exceptions.NoResources: Could not initialize any computational resource -
→˓please check log and configuration file.

can have two different causes:

1. You didn’t create a configuration file, or you did not list any resource in it.

2. Some other error prevented the resources from being initialized, or the configuration file from being properly
read.

ValueError: I/O operation on closed file

Sample error traceback (may be repeated multiple times over):

Traceback (most recent call last):
File "/usr/lib/python2.5/logging/__init__.py", line 750, in emit
self.stream.write(fs % msg)

ValueError: I/O operation on closed file

This is discussed in Issue 182; a fix have been committed to release 1.0, so if you are seeing this error, you are running
a pre-release version of GC3Pie and should Upgrade.

ValueError: Expected version spec in . . .

When trying to install GC3Pie with pip install, you get a long error report that ends with this Python traceback:

Traceback (most recent call last):
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/basecommand.py", line 232,

→˓in main
status = self.run(options, args)

File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/commands/install.py", line
→˓339, in run

requirement_set.prepare_files(finder)
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/req/req_set.py", line 436,

→˓in prepare_files
req_to_install.extras):

File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__
→˓init__.py", line 2496, in requires

dm = self._dep_map
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__

→˓init__.py", line 2491, in _dep_map (continues on next page)

60 Chapter 2. Table of Contents

https://github.com/uzh/gc3pie/issues/182

gc3pie Documentation, Release 2.6.1

(continued from previous page)

dm.setdefault(extra,[]).extend(parse_requirements(reqs))
File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__

→˓init__.py", line 2820, in parse_requirements
"version spec")

File "/opt/python/2.7.9/lib/python2.7/site-packages/pip/_vendor/pkg_resources/__
→˓init__.py", line 2785, in scan_list

raise ValueError(msg, line, "at", line[p:])
ValueError: ('Expected version spec in', 'python-novaclient;python_version>="2.7"',
→˓'at', ';python_version>="2.7"')

This means that the pip` command is too old to properly parse `Python environment
markers <https://www.python.org/dev/peps/pep-0508/>`_; ``pip version 8.1.2 is the first one
known to work well.

To fix the issue, please upgrade pip to (at least) version 8.1.2:

pip install --upgrade 'pip>=8.1.2'

User-visible changes across releases

This is a list of user-visible changes worth mentioning. In each new release, items are added to the top of
the file and identify the version they pertain to.

Contents

• User-visible changes across releases

– GC3Pie 2.6

* Important changes

* Bug fixes

– GC3Pie 2.5

* New features

* Incompatible changes

– GC3Pie 2.4

* New features

– GC3Pie 2.3

* Incompatible changes

* New features

* Important bug fixes

– GC3Pie 2.2

* New features

* Changes to command-line utilities

* Important bug fixes

– GC3Pie 2.1

2.1. User Documentation 61

gc3pie Documentation, Release 2.6.1

* New features and incompatible changes

* Changes to command-line utilities

– GC3Pie 2.0

* New features and incompatible changes

* Configuration file changes

* Changes to command-line utilities

* API changes

– GC3Pie 1.0

* Configuration file changes

* Command-line utilities changes

– GC3Pie 0.10

GC3Pie 2.6

GC3Pie 2.6.0 introduces compatibility with Python 3.5+. The changes for this are rather extensive, but lucklily mostly
confined to GC3Pie internals, so users of the library should not notice.

Warning: This release can introduce a few backwards-incompatible changes in the format for persisting tasks in
files and databases (see Important changes below). Be sure to have all your currently-running sessions done before
you upgrade!

This release depends on a few new external packages; if you’re upgrading from earlier sources, be sure to re-run pip
install . in the GC3Pie source directory; no such additional step is needed if you’re installing from PyPI with pip
install gc3pie or using GC3Pie’s own install.py script.

Important changes

• Python 3.5+ is now fully supported and tested!

• The on-disk format for saving jobs might have changed incompatibly in some cases: a few internal classes have
completely changed their inheritance hierarchy so Python’s pickle might not be able to read them back.

• GC3Pie now defaults to using “unicode” strings everywhere, but will make a best attempt at converting param-
eters passed as byte strings:

– command-line arguments and paths for I/O need to be converted using the locale’s own encoding/charset
and revert to mapping byte strings to Unicode code points by keeping the numeric value of bytes (instead
of the textual / glyph value) if the former attempt has failed

– output from commands (e.g., when interacting with a batch-queuing system): we assume that programs
are complying with the locale-defined encoding and use the locale’s own encoding to convert the output
into a unicode text string.

• Minor (internal) API changes:

– class gc3libs.Default is now a separate module gc3libs.default.

– a few unused utility methods have been removed from module gc3libs.utils.

62 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

Bug fixes

• SLURM: ignore extraneous lines in squeue output.

• LSF: If accounting command name contains the string bjobs, parse its output like bjobs’.

GC3Pie 2.5

New features

• New SessionBasedDaemon and accompanying “Inbox” classes to implement scripts that automatically
detach themselves into background and react to events in configurable sources (filesystem, database, S3/SWIFT
storage).

• Dropping cloud infrastructure support in Python 2.6; if you run GC3Pie on Python 2.6, you will only be able to
run tasks on the “localhost” resource, or on any of the supported batch-queuing systems.

• Terminal log output is now colorized according to message level! (Thanks to Adrian Etter for suggesting this
feature.)

Incompatible changes

• Old-style sessions are not supported any more. (This should not be a problem, as they have been automatically
converted to “new-style” since years now. In the unlikely case you still have an old-style session directory on
disk, just run any session command from version 2.4 and it will convert the format automatically.)

GC3Pie 2.4

New features

• The environment variable GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL can be set to yes or 1 to
cause GC3Pie to abort if any errors occur while initializing the configured resources. The default behavior of
GC3Pie is instead to keep running until there is at least one resource that can be used.

• A resource is now automatically disabled if an unrecoverable error occurs during its use.

GC3Pie 2.3

Incompatible changes

• The ARC backends and supporting code have been removed: it is no longer possible to use GC3Pie to submit
tasks to an ARC job manager.

• The environment variable GC3PIE_NO_CATCH_ERRORS now can specify a list of patterns to selectively unig-
nore unexpected/generic errors in the code. As this feature should only be used in debugging code, we allow
ourselves to break backwards compatibility.

• The cloud and mathematics libraries are no longer installed by default with pip install gc3pie – please
use:

pip install gc3pie[openstack,ec2,optimizer]

2.1. User Documentation 63

gc3pie Documentation, Release 2.6.1

to install support for all optional backends and libraries.

• The gc3libs.utils.ifelse function was removed in favor of Python’s ternary operator.

New features

• New task collection DependentTaskCollection to run a collection of tasks with given pre/post depen-
dencies across them.

• GC3Pie will now parse and obey the Port, Identity, User, ConnectionTimeout, and
ProxyCommand options from the SSH config file. Location of an alternate configuration file to use with
GC3Pie can be set in any [auth/*] section of type SSH; see the Configuration File section for details. Thanks
to Niko Eherenfeuchter and Karandash8 for feature requests and preliminary implementations.

• Application prologue and epilogue scripts can now be embedded in the GC3Pie configuration file, or referenced
by file name.

• New selection options have been added to the gselect: select job ids from from a session command.

• gc3libs.Configuration will now raise different exceptions depending on whether no files could be read
(NoAccessibleConfigurationFile) or could not be parsed (NoValidConfigurationFile).

Important bug fixes

• Shell metacharacters are now allowed in Application arguments. Each argument string is now properly quoted
before passing it to the execution layer.

• LSF backend updated to work with both bjobs and bacct for accounting, or to parse information provided in the
final output file as a last resort.

• All backends should now set a Task’s returncode and exitcode values according to the documented meaning.
Thanks to Y. Yakimovitch for reporting the issue.

GC3Pie 2.2

New features

• New openstack backend for running jobs on ephemeral VMs on OpenStack-compatible IaaS cloud systems.
This is preferred over the OpenStack EC2 compatibility layer.

• New configurable scheduler for GC3Pie’s Engine

• Session-based scripts can now snapshot the output of RUNNING jobs at every cycle.

• ARC backends are now deprecated: they will be removed in the next major version of GC3Pie.

• The pbs backend can now handle also Altair’s PBSPro.

Changes to command-line utilities

• gget: New option -A to download output files of all tasks in a session.

• gget: New option -c/--changed-only to only download files that have apparently changed remotely.

• The GC3Apps collection has been enriched with several new applications.

64 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

Important bug fixes

• Working directory for remote jobs using the shellcmd backend is now stored in /var/tmp instead of /tmp,
which should allow results to be retrieved even after a reboot of the remote machine.

GC3Pie 2.1

New features and incompatible changes

• GC3Pie now requires Python 2.6 or above to run.

• New ec2 backend for running jobs on ephemeral VMs on EC2-compatible IaaS cloud systems.

• New package gc3libs.optimizer to find local optima of functions that can be computed through a job. Currently
only implements the “Differential Evolution” algorithm, but the framework is generic enough to plug any genetic
algorithm.

• New configuration options prolog_content and epilog_content, to allow execute oneliners before or
after the command without having to create an auxiliary file.

• New resourcedir option for shellcmd resources. This is used to modify the default value for the directory
containing job informations.

Changes to command-line utilities

• New command gcloud to interface with cloud-based VMs that were spawned by GC3Pie to run jobs.

• Table output now uses a different formatting (we use Python’s prettytable package instead of the texttable
package that we were using before, due to Py3 compatibility).

GC3Pie 2.0

New features and incompatible changes

• GC3Pie can now run on MacOSX.

• A session now has a configurable storage location, which can be a directory on the filesystem (FilesystemStore,
the default so far) or can be a table in an SQL database (of any kind supported by SQLAlchemy).

• New ARC1 backend to use ARC resources through the new NorduGrid 1.x library API.

• New backend “subprocess”: execute applications as local processes.

• New backends for running on various batch-queueing systems: SLURM, LSF, PBS.

• Implement recursive upload and download of directories if they are specified in an Application’s input or output
attribute.

• New execution state TERMINATING: task objects are in this state when execution is finished remotely, but the
task output has not yet been retrieved.

• Reorganize documentation and move it to http://gc3pie.readthedocs.org/

• Script logging is now controlled by a single configuration file .gc3/gc3utils.log.conf

• Session-based scripts now print WARNING messages to STDERR by default (previously, only ERROR mes-
sages were logged).

2.1. User Documentation 65

http://gc3pie.readthedocs.org/

gc3pie Documentation, Release 2.6.1

• Add caching to ARC backends, to reduce the number of network queries.

• Use GNU “.~NUMBER~” format for backup directories.

Configuration file changes

• Rename ARC0 resource type to arc0

Changes to command-line utilities

• New gsession command to manage sessions.

• The glist command was renamed to gservers

• The gsub and gnotify commands were removed.

• The PATH tag no longer gets any special treatment in session-based scripts --output processing.

• ginfo: New option --tabular to print information in table format.

• gkill: New option -A/–all to remove all jobs in a session.

• Use the rungms script to execute GAMESS.

API changes

• Module gc3libs.dag has been renamed to gc3libs.workflow.

• API changes in gc3libs.cmdline.SessionBasedScript allow new_tasks() in SessionBasedScript in-
stances to return Task instances instead of quadruples.

• Interpret Application.requested_memory as the total memory for the job.

• the Resource and LRMS objects were merged

• the gc3libs.scheduler module has been removed; its functionality is now incorporated in the
Application class.

• configuration-related code moved into gc3libs.config module

• removed the application registry.

• New package gc3libs.compat to provide 3rd-party functionality that is not present in all supported versions of
Python.

• Implement gc3libs.ANY_OUTPUT to retrieve the full contents of the output directory, whatever it is.

• New RetryableTask class to wrap a task and re-submit it on failure until some specified condition is met.

GC3Pie 1.0

Configuration file changes

• Renamed configuration file to gc3pie.conf: the file gc3utils.conf will no longer be read!

• SGE clusters must now have type = sge in the configuration file (instead of type = ssh-sge)

• All computational resource must have an architecture = ... line; see the ConfigurationFile wiki page
for details

66 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

• Probably more changes than it’s worth to list here: check your configuration against the Configuration File page!

Command-line utilities changes

• GC3Utils and GC3Apps (grosetta/ggamess/etc.) now all accept a -s/--session option for locating the
job storage directory: this allows grouping jobs into folders instead of shoveling them all into ~/.gc3/jobs.

• GC3Apps: replaced option -t/--table with -l/--states. The new option prints a table of submitted jobs
in addition to the summary stats; if a comma-separated list of job states follows the option, only job in those
states are printed.

• Command gstat will now print a summary of the job states if the list is too long to fit on screen; use the -v
option to get the full job listing regardless of its length.

• Command gstat can now print information on jobs in a certain state only; see help text for option --state

• Removed -l option from ginfo; use -v instead.

• GC3Utils: all commands accepting multiple job IDs on the command line, now exit with the number of er-
rors/failures occurred. Since exit codes are practically limited to 7 bits, exit code 126 means that more than 125
failures happened.

GC3Pie 0.10

• First release for public use outside of GC3

2.2 Programmer Documentation

This document is the technical reference for the GC3Libs programming model, aimed at programmers who want to
use GC3Libs to implement computational workflows in Python.

The Programming overview section is the starting point for whoever wants to start developing applications with
GC3Pie. It gives an overview of the main components of the library and how they interact with each other.

The Tutorials section contains documentation that describes in more detail the various components discussed in the
programming overview, as well as many working examples (took from exercises done during the training events) and
the The “Warholize” Workflow Tutorial: a step-by-step tutorial that will show you how to write a complex GC3Pie
workflow.

The GC3Libs programming API section instead contains the API reference of GC3Pie library.

2.2.1 Programming overview

Computational job lifecycle

A computational job (for short: job) is a single run of a non-interactive application. The prototypical example is a run
of GAMESS on a single input file.

The GC3Utils commands support the following workflow:

1. Submit a GAMESS job (with a single input file): ggamess

2. Monitor the status of the submitted job: gstat

3. Retrieve the output of a job once it’s finished: gget

2.2. Programmer Documentation 67

http://www.gc3.uzh.ch/
tutorials/index.html
http://www.msg.ameslab.gov/gamess/
http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.6.1

Usage and some examples on how to use the mentioned commands are provided in the next sections

Managing jobs with GC3Libs

GC3Libs takes an application-oriented approach to asynchronous computing. A generic Application class pro-
vides the basic operations for controlling remote computations and fetching a result; client code should derive special-
ized sub-classes to deal with a particular application, and to perform any application-specific pre- and post-processing.

The generic procedure for performing computations with GC3Libs is the following:

1. Client code creates an instance of an Application sub-class.

2. Asynchronous computation is started by submitting the application object; this associates the application with
an actual (possibly remote) computational job.

3. Client code can monitor the state of the computational job; state handlers are called on the application object as
the state changes.

4. When the job is done, the final output is retrieved and a post-processing method is invoked on the application
object.

At this point, results of the computation are available and can be used by the calling program.

The Application class (and its sub-classes) alow client code to control the above process by:

1. Specifying the characteristics (computer program to run, input/output files, memory/CPU/duration require-
ments, etc.) of the corresponding computational job. This is done by passing suitable values to the
Application constructor. See the Application constructor documentation for a detailed description
of the parameters.

2. Providing methods to control the “life-cycle” of the associated computational job: start, check execution state,
stop, retrieve a snapshot of the output files. There are actually two different interfaces for this, detailed below:

1. A passive interface: a Core or a Engine object is used to start/stop/monitor jobs associated with the
given application. For instance:

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

start the remote computation
g.submit(a)

periodically monitor job execution
g.update_job_state(a)

retrieve output when the job is done
g.fetch_output(a)

The passive interface gives client code full control over the lifecycle of the job, but cannot support some
use cases (e.g., automatic application re-start).

As you can see from the above example, the passive interface is implemented by methods in the Core and
Engine classes (they implement the same interface). See those classes documentation for more details.

2. An active interface: this requires that the Application object be attached to a Core or Engine
instance:

68 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

tell application to use the active interface
a.attach(g)

start the remote computation
a.submit()

periodically monitor job execution
a.update_job_state()

retrieve output when the job is done
a.fetch_output()

With the active interface, application objects can support automated restart and similar use-cases.

When an Engine object is used instead of a Core one, the job life-cycle is automatically managed,
providing a fully asynchronous way of executing computations.

The active interface is implemented by the Task class and all its descendants (including Application).

3. Providing “state transition methods” that are called when a change in the job execution state is detected; those
methods can implement application specific behavior, like restarting the computational job with changed input
if the alloted duration has expired but the computation has not finished. In particular, a postprocess method is
called when the final output of an application is available locally for processing.

The set of “state transition methods” currently implemented by the Application class are: new(),
submitted(), running(), stopped(), terminated() and postprocess(). Each method is
called when the execution state of an application object changes to the corresponding state; see each method’s
documentation for exact information.

In addition, GC3Libs provides collection classes, that expose interfaces 2. and 3. above, allowing one to control a set
of applications as a single whole. Collections can be nested (i.e., a collection can hold a mix of Application and
TaskCollection objects), so that workflows can be implemented by composing collection objects.

Note that the term computational job (or just job, for short) is used here in a quite general sense, to mean any kind
of computation that can happen independently of the main thread of the calling program. GC3Libs currently provide
means to execute a job as a separate process on the same computer, or as a batch job on a remote computational cluster.

Execution model of GC3Libs applications

An Application can be regarded as an abstraction of an independent asynchronous computation, i.e., a GC3Libs’
Application behaves much like an independent UNIX process (but it can actually run on a separate remote computer).
Indeed, GC3Libs’ Application objects mimic the POSIX process model: Application are started by a parent process,
run independently of it, and need to have their final exit code and output reaped by the calling process.

The following table makes the correspondence between POSIX processes and GC3Libs’ Application objects explicit.

os module function Core function purpose
exec Core.submit start new job
kill(. . . , SIGTERM) Core.kill terminate executing job
wait(. . . , WNOHANG) Core.update_job_state get job status

• Core.fetch_output retrieve output

2.2. Programmer Documentation 69

gc3pie Documentation, Release 2.6.1

Note:

1. With GC3Libs, it is not possible to send an arbitrary signal to a running job: jobs can only be started and stopped
(killed).

2. Since POSIX processes are always executed on the local machine, there is no equivalent of the GC3Libs
fetch_output.

Application exit codes

POSIX encodes process termination information in the “return code”, which can be parsed through os.WEXITSTATUS,
os.WIFSIGNALED, os.WTERMSIG and relative library calls.

Likewise, GC3Libs provides each Application object with an execution.returncode attribute, which is a valid
POSIX “return code”. Client code can therefore use os.WEXITSTATUS and relatives to inspect it; convenience at-
tributes execution.signal and execution.exitcode are available for direct access to the parts of the return code. See
Run.returncode() for more information.

However, GC3Libs has to deal with error conditions that are not catered for by the POSIX process model: for instance,
execution of an application may fail because of an error connecting to the remote execution cluster.

To this purpose, GC3Libs encodes information about abnormal job termination using a set of pseudo-signal codes
in a job’s execution.returncode attribute: i.e., if termination of a job is due to some grid/batch system/middleware
error, the job’s os.WIFSIGNALED(app.execution.returncode) will be True and the signal code (as gotten from
os.WTERMSIG(app.execution.returncode)) will be one of those listed in the Run.Signals documentation.

Application execution states

At any given moment, a GC3Libs job is in any one of a set of pre-defined states, listed in the table below. The job state
is always available in the .execution.state instance property of any Application or Task object; see Run.state() for
detailed information.

GC3Libs’
Job state

purpose can change to

NEW Job has not yet been submitted/started (i.e., gsub not called) SUBMITTED (by gsub)
SUBMIT-
TED

Job has been sent to execution resource RUNNING, STOPPED

STOPPED Trap state: job needs manual intervention (either user- or
sysadmin-level) to resume normal execution

TERMINATED (by gkill), SUB-
MITTED (by miracle)

RUNNING Job is executing on remote resource TERMINATED
UN-
KNOWN

Job info not found or lost track of job (e.g., network error or
invalid job ID)

any other state

TERMI-
NATED

Job execution is finished (correctly or not) and will not be re-
sumed

None: final state

When an Application object is first created, its .execution.state attribute is assigned the state NEW. After
a successful start (via Core.submit() or similar), it is transitioned to state SUBMITTED. Further transitions to
RUNNING or STOPPED or TERMINATED state, happen completely independently of the creator program: the
Core.update_job_state() call provides updates on the status of a job. (Somewhat like the POSIX wait(. . . , WNO-
HANG) system call, except that GC3Libs provide explicit RUNNING and STOPPED states, instead of encoding them
into the return value.)

70 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

The STOPPED state is a kind of generic “run time error” state: a job can get into the STOPPED state if its execution
is stopped (e.g., a SIGSTOP is sent to the remote process) or delayed indefinitely (e.g., the remote batch system puts
the job “on hold”). There is no way a job can get out of the STOPPED state automatically: all transitions from the
STOPPED state require manual intervention, either by the submitting user (e.g., cancel the job), or by the remote
systems administrator (e.g., by releasing the hold).

The UNKNOWN state is a temporary error state: whenever GC3Pie is unable to get any information on the job, its
state move to UNKNOWN. It is usually related to a (hopefully temporary) failure while accessing the remote resource,
because of a network error or because the resource is not correctly configured. After the underlying cause of the error
is fixed and GC3Pie is able again to get information on the job, its state will change to the proper state.

The TERMINATED state is the final state of a job: once a job reaches it, it cannot get back to any other state. Jobs
reach TERMINATED state regardless of their exit code, or even if a system failure occurred during remote execution;
actually, jobs can reach the TERMINATED status even if they didn’t run at all!

A job that is not in the NEW or TERMINATED state is said to be a “live” job.

Computational job specification

One of the purposes of GC3Libs is to provide an abstraction layer that frees client code from dealing with the de-
tails of job execution on a possibly remote cluster. For this to work, it necessary to specify job characteristics and
requirements, so that the GC3Libs scheduler can select an appropriate computational resource for executing the job.

GC3Libs Application provide a way to describe computational job characteristics (program to run, input and output
files, memory/duration requirements, etc.) loosely patterned after ARC’s xRSL language.

The description of the computational job is done through keyword parameters to the Application constructor,
which see for details. Changes in the job characteristics after an Application object has been constructed are not
currently supported.

2.2.2 GC3Pie programming tutorials

Contents

• GC3Pie programming tutorials

– Implementing scientific workflows with GC3Pie

– A bottom-up introduction to programming with GC3Pie

– The “Warholize” Workflow Tutorial

– Example scripts

Implementing scientific workflows with GC3Pie

This is the course material prepared for the “GC3Pie for Programmers” training, held at the University of Zurich for
the first time on July 11-14, 2016. (The slides presented here are revised at each course re-run.)

The course aims at showing how to implement patterns commonly seen in scientific computational workflows using
Python and GC3Pie, and provide users with enough knowledge of the tools available in GC3Pie to extend and adapt
the examples provided.

Introduction to the training

2.2. Programmer Documentation 71

http://www.nordugrid.org/documents/xrsl.pdf
http://www.s3it.uzh.ch/en/scienceit/support/training/gc3pie/programmers.html
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part00.pdf

gc3pie Documentation, Release 2.6.1

A presentation of the training material and outline of the course. Probably not much useful unless you’re
actually sitting in class.

Overview of GC3Pie use cases

A quick overview of the kind of computational use cases that GC3Pie can easily solve.

GC3Pie basics

The basics needed to write simple GC3Pie scripts: the minimal session-based script scaffolding, and the
properties and features of the Application object.

Useful debugging commands

Recall a few GC3Pie utilities that are especially useful when debugging code.

Customizing command-line processing

How to set up command-line argument and option processing in GC3Pie’s SessionBasedScript

Application requirements

How to specify running requirements for Application tasks, e.g., how much memory is needed to run.

Application control and post-processing

How to check and react on the termination status of a GC3Pie Task/Application.

Introduction to workflows

A worked-out example of a many-step workflow.

Running tasks in a sequence

How to run tasks in sequence: basic usage of SequentialTaskCollection and
StagedTaskCollection

Running tasks in parallel

How to run independent tasks in parallel: the ParallelTaskCollection

Automated construction of task dependency graphs

How to use the DependentTaskCollection for automated arrangement of tasks given their depen-
dencies.

Dynamic and Unbounded Sequences of Tasks

How to construct SequentialTaskCollection classes that change the sequence of tasks while
being run.

A bottom-up introduction to programming with GC3Pie

This is the course material made for the GC3Pie 2012 Training event held at the University of Zurich on October 1-2,
2012.

The presentation starts with low-level concepts (e.g., the Application and how to do manual task submission) and
then gradually introduces more sophisticated tools (e.g., the SessionBasedScript and workflows).

This order of introducing concepts will likely appeal most to those already familiar with batch-computing and grid
computing, as it provides an immediate map of the job submission and monitoring commands to GC3Pie equivalents.

Introduction to GC3Pie

Introduction to the software: what is GC3Pie, what is it for, and an overview of its features for writing
high-throughput computing scripts.

72 Chapter 2. Table of Contents

https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part01.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part02.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part03.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part04.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part05.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part06.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part07.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part08.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part09.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part10.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/workflows/part11.pdf
https://www.gc3.uzh.ch/edu/gc3pie2012/
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part01.pdf

gc3pie Documentation, Release 2.6.1

Basic GC3Pie programming

The Application class, the smallest building block of GC3Pie. Introduction to the concept of Job, states
of an application and to the Core class.

Application requirements

How to define extra requirements for an application, such as the minimum amount of memory it will use,
the number of cores needed or the architecture of the CPUs.

Managing applications: the SessionBasedScript class

Introduction to the highest-level interface to build applications with GC3Pie, the SessionBasedScript.
Information on how to create simple scripts that take care of the execution of your applications, from
submission to getting back the final results.

The GC3Utils commands

Low-level tools to aid debugging the scripts.

Introduction to Workflows with GC3Pie

Using a practical example (the The “Warholize” Workflow Tutorial) we show how workflows are imple-
mented with GC3Pie. The following slides will cover in more details the single steps needed to produce
a complex workflow.

ParallelTaskCollection

Description of the ParallelTaskCollection class, used to run tasks in parallel.

StagedTaskCollection

Description of the StagedTaskCollection class, used to run a sequence of a fixed number of jobs.

SequentialTaskCollection

Description of the SequentialTaskCollection class, used to run a sequence of jobs that can be altered during
runtime.

The “Warholize” Workflow Tutorial

In this tutorial we show how to use the GC3Pie libraries in order to build a command line script which runs a complex
workflow with both parallelly- and sequentially-executing tasks.

The tutorial itself contains the complete source code of the application (see Literate Programming on Wikipedia), so
that you will be able to test/modify it and produce a working warholize.py script by downloading the pylit.
py:file: script from the PyLit Homepage and running the following command on the docs/programmers/
tutorials/warholize/warholize.rst file, from within the source tree of GC3Pie:

$./pylit warholize.rst warholize.py

Introduction

Warholize is a GC3Pie demo application to produce, from a generic image picture, a new picture like the famous
Warhol’s work: Marylin. The script uses the powerful ImageMagick set of tools (at least version 6.3.5-7). This
tutorial will assume that both ImageMagick and GC3Pie are already installed and configured.

In order to produce a similar image we have to do a series of transformations on the picture:

1) convert the original image to grayscale.

2.2. Programmer Documentation 73

https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part03.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part04.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part05.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part06.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part08.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part09.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part10.pdf
https://github.com/uzh/gc3pie/tree/master/docs/programmers/tutorials/bottom-up/part11.pdf
http://en.wikipedia.org/wiki/Literate_programming
https://github.com/gmilde/PyLit
http://artobserved.com/artists/andy-warhol/
http://www.imagemagick.org/

gc3pie Documentation, Release 2.6.1

2) colorize the grayscale image using three different colors each time, based on the gray levels. We may, for
instance, make all pixels with luminosity between 0-33% in red, pixels between 34-66% in yellow and pixels
between 67% and 100% in green.

To do that, we first have to:

a) create a Color Lookup Table (LUT) using a combination of three randomly chosen colors

b) apply the LUT to the grayscale image

3) Finally, we can merge together all the colorized images and produce our warholized image.

Clearly, step 2) depends on the step 1), and 3) depends on 2), so we basically have a sequence of tasks, but since step
2) need to create N different independent images, we can parallelize this step.

Fig. 1: Workflow of the warholize script

From top to bottom

We will write our script starting from the top and will descend to the bottom, from the command line script, to the
workflow and finally to the single execution units which compose the application.

The script

The SessionBasedScript class in the gc3libs.cmdline module is used to create a generic script. It already have all what
is needed to read gc3pie configuration files, manage resources, schedule jobs etc. The only missing thing is, well, your
application!

74 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

Let’s start by creating a new empty file and importing some basic modules:

import os
import gc3libs
from gc3libs.cmdline import SessionBasedScript

we then create a class which inherits from SessionBasedScript (in GC3Pie, most of the customizations are done by
inheriting from a more generic class and overriding the __init__ method and possibly others):

class WarholizeScript(SessionBasedScript):
"""
Demo script to create a `Warholized` version of an image.
"""
version='1.0'

Please note that you must either write a small docstring, or add a description attribute. These values are used when the
script is called with options --help or --version, which are automatically added by GC3Pie.

The way we want to use our script is straightforward:

$ warholize.py inputfile [inputfiles ...]

and this will create a directory Warholized.<inputfile> in which there will be a file called
warhol_<inputfile> containing the desired warholized image (and a lot of temporary files, at least for now).

But we may want to add some additional options to the script, in order to decide how many colorized pictures the
warholized image will be made of, or if we want to resize the image. SessionBasedScript uses the PyCLI module
which is, in turn, a wrapper around standard argparse (or optparse for older pythons) module. To customize the script
you may define a setup_options method and put in there some calls to SessionBasedScript.add_param(), which is
inherited from cli.app.CommandLineApp:

def setup_options(self):
self.add_param('--copies', default=4, type=int,

help="Number of copyes (Default:4). It has to be a perfect square!
→˓")

In this example we will accept a --copies option to define how many colorized copies the final picture will be made
of. Please refer to the documentation of the PyCLI module for details on the syntax of the add_param method.

The heart of the script is, however, the new_tasks method, which will be called to create the initial tasks of the scripts.
In our case it will be something like:

def new_tasks(self, extra):
gc3libs.log.info("Creating main sequential task")
for (i, input_file) in enumerate(self.params.args):

extra_args = extra.copy()
extra_args['output_dir'] = 'Warholized.%s' % os.path.basename(input_file)
yield WarholizeWorkflow(input_file,

self.params.copies,

**extra_args)

new_tasks is used as a generator (but it could return a list as well). Each yielded object is a task. In GC3Pie, a
task is either a single application or a complex workflow, and rapresents an execution unit. In our case we create a
WarholizeWorkflow task which is the workflow described before.

In our case we yield a different WarholizeWorkflow task for each input file. These tasks will run in parallel.

Please note that we are using the gc3libs.log module to log informations about the execution. This module works
like the logging module and has methods like error, warning, info or debug, but its logging level is automatically

2.2. Programmer Documentation 75

http://packages.python.org/pyCLI/
http://docs.python.org/library/argparse.html
http://docs.python.org/library/optparse.html
http://packages.python.org/pyCLI/
http://docs.python.org/library/logging.html

gc3pie Documentation, Release 2.6.1

configured by SessionBasedScript’s constructor. This way you can increase the verbosity of your script by simply
adding -v options from the command line.

The workflows

Main sequential workflow

The module gc3libs.workflow contains two main objects: SequentialTaskCollection and ParallelTaskCollection. They
execute tasks in serial and in parallel, respectively. We will use both of them to create our workflow; the first one,
WarholizeWorkflow, is a sequential task, therefore we have to inherit from SequentialTaskCollection and customize its
__init__ method:

from gc3libs.workflow import SequentialTaskCollection, ParallelTaskCollection
import math
from gc3libs import Run

class WarholizeWorkflow(SequentialTaskCollection):
"""
Main workflow.
"""

def __init__(self, input_image, copies, **extra_args):
self.input_image = input_image
self.output_image = "warhol_%s" % os.path.basename(input_image)

gc3libs.log.info(
"Producing a warholized version of input file %s "
"and store it in %s" % (input_image, self.output_image))

self.output_dir = os.path.relpath(extra_args.get('output_dir'))

self.copies = copies

Check that copies is a perfect square
if math.sqrt(self.copies) != int(math.sqrt(self.copies)):

raise gc3libs.exceptions.InvalidArgument(
"`copies` argument must be a perfect square.")

self.jobname = extra_args.get('jobname', 'WarholizedWorkflow')
self.grayscaled_image = "grayscaled_%s" % os.path.basename(self.input_image)

Up to now we just parsed the arguments. The following lines, instead, create the first task that we want to execute. By
now, we can create only the first one, GrayScaleConvertApplication, which will produce a grayscale image from the
input file:

self.tasks = [
GrayScaleConvertApplication(

self.input_image, self.grayscaled_image, self.output_dir,
self.output_dir),

]

Finally, we call the parent’s constructor.:

SequentialTaskCollection.__init__(
self, self.tasks)

76 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

This will create the initial task list, but we have to run also step 2 and 3, and this is done by creating a next method.
This method will be called after all the tasks in self.tasks are finished. We cannot create all the jobs at once because
we don’t have all the needed input files yet. Please note that by creating the tasks in the next method you could decide
at runtime which tasks to run next and what arguments we may want to give to them.

In our case, however, the next method is quite simple:

def next(self, iteration):
last = self.tasks[-1]

if iteration == 0:
first time we got called. We have the grayscaled image,
we have to run the Tricolorize task.
self.add(TricolorizeMultipleImages(

os.path.join(self.output_dir, self.grayscaled_image),
self.copies, self.output_dir))

return Run.State.RUNNING
elif iteration == 1:

second time, we already have the colorized images, we
have to merge them together.
self.add(MergeImagesApplication(

os.path.join(self.output_dir, self.grayscaled_image),
last.warhol_dir,
self.output_image))

return Run.State.RUNNING
else:

self.execution.returncode = last.execution.returncode
return Run.State.TERMINATED

At each iteration, we call self.add() to add an instance of a task-like class (gc3libs.Application,
gc3libs.workflow.ParallelTaskCollection or gc3libs.workflow.SequentialTaskCollection, in our case) to complete the
next step, and we return the current state, which will be gc3libs.Run.State.RUNNING unless we have finished the
computation.

Step one: convert to grayscale

GrayScaleConvertApplication is the application responsible to convert to grayscale the input image. The command
we want to execute is:

$ convert -colorspace gray <input_image> grayscaled_<input_image>

To create a generic application we create a class which inherit from gc3libs.Application and we usually only need to
customize the __init__ method:

An useful function to copy files
from shutil import copyfile

class GrayScaleConvertApplication(gc3libs.Application):
def __init__(self, input_image, grayscaled_image, output_dir, warhol_dir):

self.warhol_dir = warhol_dir
self.grayscaled_image = grayscaled_image

arguments = [
'convert',
os.path.basename(input_image),
'-colorspace',

(continues on next page)

2.2. Programmer Documentation 77

gc3pie Documentation, Release 2.6.1

(continued from previous page)

'gray',
]

gc3libs.log.info(
"Craeting GrayScale convert application from file %s"
"to file %s" % (input_image, grayscaled_image))

gc3libs.Application.__init__(
self,
arguments = arguments + [grayscaled_image],
inputs = [input_image],
outputs = [grayscaled_image, 'stderr.txt', 'stdout.txt'],
output_dir = output_dir,
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Creating a gc3libs.Application is straigthforward: you just call the constructor with the executable, the arguments, and
the input/output files you will need.

If you don’t specify the output_dir directory, gc3pie libraries will create one starting from the class name. If the
output directory exists already, the old one will be renamed.

To do any kind of post processing you can define a terminate method for your application. It will be called after your
application will terminate. In our case we want to copy the gray scale version of the image to the warhol_dir, so that
it will be easily reachable by all other applications:

def terminated(self):
"""Move grayscale image to the main output dir"""
copyfile(

os.path.join(self.output_dir, self.grayscaled_image),
self.warhol_dir)

Step two: parallel workflow to create colorized images

The TricolorizeMultipleImages is responsible to create multiple versions of the grayscale image with different
coloration chosen randomly from a list of available colors. It does it by running multiple instance of Tricol-
orizeImage with different arguments. Since we want to run the various colorization in parallel, it inherits from
gc3libs.workflow.ParallelTaskCollection class. Like we did for GrayScaleConvertApplication, we only need to cus-
tomize the constructor __init__, creating the various subtasks we want to run:

import itertools
import random

class TricolorizeMultipleImages(ParallelTaskCollection):
colors = ['yellow', 'blue', 'red', 'pink', 'orchid',

'indigo', 'navy', 'turquoise1', 'SeaGreen', 'gold',
'orange', 'magenta']

def __init__(self, grayscaled_image, copies, output_dir):
gc3libs.log.info(

"TricolorizeMultipleImages for %d copies run" % copies)
self.jobname = "Warholizer_Parallel"
ncolors = 3
XXX Why I have to use basename???

(continues on next page)

78 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

self.output_dir = os.path.join(
os.path.basename(output_dir), 'tricolorize')

self.warhol_dir = output_dir

Compute a unique sequence of random combination of
colors. Please note that we can have a maximum of N!/3! if N
is len(colors)
assert copies <= math.factorial(len(self.colors)) / math.factorial(ncolors)

combinations = [i for i in itertools.combinations(self.colors, ncolors)]
combinations = random.sample(combinations, copies)

Create all the single tasks
self.tasks = []
for i, colors in enumerate(combinations):

self.tasks.append(TricolorizeImage(
os.path.relpath(grayscaled_image),
"%s.%d" % (self.output_dir, i),
"%s.%d" % (grayscaled_image, i),
colors,
self.warhol_dir))

ParallelTaskCollection.__init__(self, self.tasks)

The main loop will fill the self.tasks list with various TricolorizedImage tasks, each one with an unique combination
of three colors to use to generate the colorized image. The GC3Pie framework will then run these tasks in parallel, on
any available resource.

The TricolorizedImage class is indeed a SequentialTaskCollection, since it has to generate the LUT first, and then apply
it to the grayscale image. We already saw how to create a SequentialTaskCollection: we modify the constructor in
order to add the first job (CreateLutApplication), and the next method will take care of running the ApplyLutApplication
application on the output of the first job:

class TricolorizeImage(SequentialTaskCollection):
"""
Sequential workflow to produce a `tricolorized` version of a
grayscale image
"""
def __init__(self, grayscaled_image, output_dir, output_file,

colors, warhol_dir):
self.grayscaled_image = grayscaled_image
self.output_dir = output_dir
self.warhol_dir = warhol_dir
self.jobname = 'TricolorizeImage'
self.output_file = output_file

if not os.path.isdir(output_dir):
os.mkdir(output_dir)

gc3libs.log.info(
"Tricolorize image %s to %s" % (

self.grayscaled_image, self.output_file))

self.tasks = [
CreateLutApplication(

self.grayscaled_image,

(continues on next page)

2.2. Programmer Documentation 79

gc3pie Documentation, Release 2.6.1

(continued from previous page)

"%s.miff" % self.grayscaled_image,
self.output_dir,
colors, self.warhol_dir),

]

SequentialTaskCollection.__init__(self, self.tasks)

def next(self, iteration):
last = self.tasks[-1]
if iteration == 0:

First time we got called. The LUT has been created, we
have to apply it to the grayscale image
self.add(ApplyLutApplication(

self.grayscaled_image,
os.path.join(last.output_dir, last.lutfile),
os.path.basename(self.output_file),
self.output_dir, self.warhol_dir))

return Run.State.RUNNING
else:

self.execution.returncode = last.execution.returncode
return Run.State.TERMINATED

The CreateLutApplication is again an application which inherits from gc3libs.Application. The command we want to
execute is something like:

$ convert -size 1x1 xc:<color1> xc:<color2> xc:<color3> +append -resize 256x1!
→˓<output_file.miff>

This will basically create an image 256x1 pixels big, made of a gradient using all the listed colors. The code will look
like:

class CreateLutApplication(gc3libs.Application):
"""Create the LUT for the image using 3 colors picked randomly
from CreateLutApplication.colors"""

def __init__(self, input_image, output_file, output_dir, colors, working_dir):
self.lutfile = os.path.basename(output_file)
self.working_dir = working_dir
gc3libs.log.info("Creating lut file %s from %s using "

"colors: %s" % (
self.lutfile, input_image, str.join(", ", colors)))

gc3libs.Application.__init__(
self,
arguments = [

'convert',
'-size',
'1x1'] + [
"xc:%s" % color for color in colors] + [
'+append',
'-resize',
'256x1!',
self.lutfile,
],

inputs = [input_image],
outputs = [self.lutfile, 'stdout.txt', 'stderr.txt'],
output_dir = output_dir + '.createlut',

(continues on next page)

80 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

(continued from previous page)

stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Similarly, the ApplyLutApplication application will run the following command:

$ convert grayscaled_<input_image> <lutfile.N.miff> -clut grayscaled_<input_image>.
→˓<N>

This command will apply the LUT to the grayscaled image: it will modify the grayscaled image by coloring a generic
pixel with a luminosity value of n (which will be an integer value from 0 to 255, of course) with the color at position
n in the LUT image (actually, n+1). Each ApplyLutApplication will save the resulting image to a file named as
grayscaled_<input_image>.<N>.

The class will look like:

class ApplyLutApplication(gc3libs.Application):
"""Apply the LUT computed by `CreateLutApplication` to
`image_file`"""

def __init__(self, input_image, lutfile, output_file, output_dir, working_dir):

gc3libs.log.info("Applying lut file %s to %s" % (lutfile, input_image))
self.working_dir = working_dir
self.output_file = output_file

gc3libs.Application.__init__(
self,
arguments = [

'convert',
os.path.basename(input_image),
os.path.basename(lutfile),
'-clut',
output_file,
],

inputs = [input_image, lutfile],
outputs = [output_file, 'stdout.txt', 'stderr.txt'],
output_dir = output_dir + '.applylut',
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

The terminated method:

def terminated(self):
"""Copy colorized image to the output dir"""
copyfile(

os.path.join(self.output_dir, self.output_file),
self.working_dir)

will copy the colorized image file in the top level directory, so that it will be easier for the last application to find all
the needed files.

2.2. Programmer Documentation 81

gc3pie Documentation, Release 2.6.1

Step three: merge all them together

At this point we will have in the main output directory a bunch of files named after
grayscaled_<input_image>.N with N a sequential integer and <input_image> the name of the
original image. The last application, MergeImagesApplication, will produce a warhol_<input_image> image
by merging all of them using the command:

$ montage grayscaled_<input_image>.* -tile 3x3 -geometry +5+5 -background white
→˓warholized_<input_image>

Now it should be easy to write such application:

import re

class MergeImagesApplication(gc3libs.Application):
def __init__(self, grayscaled_image, input_dir, output_file):

ifile_regexp = re.compile(
"%s.[0-9]+" % os.path.basename(grayscaled_image))

input_files = [
os.path.join(input_dir, fname) for fname in os.listdir(input_dir)
if ifile_regexp.match(fname)]

input_filenames = [os.path.basename(i) for i in input_files]
gc3libs.log.info("MergeImages initialized")
self.input_dir = input_dir
self.output_file = output_file

tile = math.sqrt(len(input_files))
if tile != int(tile):

gc3libs.log.error(
"We would expect to have a perfect square"
"of images to merge, but we have %d instead" % len(input_files))

raise gc3libs.exceptions.InvalidArgument(
"We would expect to have a perfect square of images to merge, but we

→˓have %d instead" % len(input_files))

gc3libs.Application.__init__(
self,
arguments = ['montage'] + input_filenames + [

'-tile',
'%dx%d' % (tile, tile),
'-geometry',
'+5+5',
'-background',
'white',
output_file,
],

inputs = input_files,
outputs = [output_file, 'stderr.txt', 'stdout.txt'],
output_dir = os.path.join(input_dir, 'output'),
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

82 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

Making the script executable

Finally, in order to make the script executable, we add the following lines to the end of the file. The Warholize-
Scritp().run() call will be executed only when the file is run as a script, and will do all the magic related to argument
parsing, creating the session etc. . . :

if __name__ == '__main__':
import warholize
warholize.WarholizeScript().run()

Please note that the import warholize statement is important to address issue 95 and make the gc3pie scripts
work with your current session (gstat, ginfo. . .)

Testing

To test this script I would suggest to use the famous Lena picture, which can be found in the miscelaneous section of
the Signal and Image Processing Institute page. Download the image, rename it as lena.tiff and run the following
command:

$./warholize.py -C 1 lena.tiff --copies 9

(add -r localhost if your gc3pie.conf script support it and you want to test it locally).

After completion a file Warholized.lena.tiff/output/warhol_lena.tiff will be created.

Example scripts

A collection of small example scripts highlighting different features of GC3Pie is available in the source distribution,
in folder examples/:file:

gdemo_simple.py

Simplest script you can create. It only uses Application and Engine classes to create an application, submit
it, check its status and retrieve its output.

grun.py

a SessionBasedScript that executes its argument as command. It can also run it multiple times by wrapping
it in a ParallelTaskCollection or a SequentialTaskCollection, depending on a command line option. Useful
for testing a configured resource.

gdemo_session.py

a simple SessionBasedScript that sums two values by customizing a SequentialTaskCollection.

warholize.py

an enhanced version of the warholize script proposed in the The “Warholize” Workflow Tutorial

2.2.3 GC3Libs programming API

gc3libs

gc3libs.application

2.2. Programmer Documentation 83

https://github.com/uzh/gc3pie/issues/95
http://sipi.usc.edu/database/?volume=misc
https://github.com/uzh/gc3pie/tree/master/examples/gdemo_simple.py
https://github.com/uzh/gc3pie/tree/master/examples/grun.py
https://github.com/uzh/gc3pie/tree/master/examples/gdemo_session.py
https://github.com/uzh/gc3pie/tree/master/examples/warholize.py

gc3pie Documentation, Release 2.6.1

Fig. 2: Warholized version of Lena

84 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

gc3libs.application.apppot

gc3libs.application.codeml

gc3libs.application.demo

gc3libs.application.gamess

gc3libs.application.rosetta

gc3libs.application.turbomole

gc3libs.authentication

gc3libs.authentication.ec2

gc3libs.authentication.openstack

gc3libs.authentication.ssh

gc3libs.backends

gc3libs.backends.batch

gc3libs.backends.ec2

gc3libs.backends.lsf

gc3libs.backends.noop

gc3libs.backends.openstack

gc3libs.backends.pbs

gc3libs.backends.sge

gc3libs.backends.shellcmd

gc3libs.backends.slurm

gc3libs.backends.transport

gc3libs.backends.vmpool

gc3libs.cmdline

gc3libs.config

gc3libs.core

gc3libs.debug

2.2. Programmer Documentation 85

gc3pie Documentation, Release 2.6.1

gc3libs.defaults

gc3libs.events

gc3libs.exceptions

gc3libs.optimizer

gc3libs.optimizer.dif_evolution

gc3libs.optimizer.drivers

gc3libs.optimizer.extra

gc3libs.persistence

gc3libs.persistence.accessors

gc3libs.persistence.filesystem

gc3libs.persistence.idfactory

gc3libs.persistence.serialization

gc3libs.persistence.sql

gc3libs.persistence.store

gc3libs.poller

gc3libs.quantity

gc3libs.session

gc3libs.template

gc3libs.testing

gc3libs.testing.helpers

gc3libs.url

gc3libs.utils

gc3libs.workflow

gc3utils

gc3utils.commands

gc3utils.frontend

This is the main entry point for command gc3utils – a simple command-line frontend to distributed resources

86 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.6.1

This is a generic front-end code; actual implementation of commands can be found in gc3utils.commands

gc3utils.frontend.main()
Generic front-end function to invoke the commands in gc3utils/commands.py

2.3 Contributors documentation

This section contains information needed by people who want to contribute code to GC3Pie.

2.3.1 Contributing to GC3Pie

First of all, thanks for wanting to contribute to GC3Pie! GC3Pie is an open-ended endeavour, and we’re always looking
for new ideas, suggestions, and new code. (And also, for fixes to bugs old and new ;-))

The paragraphs below should brief you about the organization of the GC3Pie code repositories, and the suggested
guidelines for code and documentation style. Feel free to request more info or discuss the existing recommendations
on the GC3Pie mailing list

Code repository organization

GC3Pie code is hosted in a GitHub repository, which you can access online or using any Git client.

We encourage anyone to fork the repository and contribute back modifications in the form of pull requests.

The master branch should always be deployable: code in master should normally run without major known issues (but
it may contain code that has yet not been released to PyPI). A tag is created on the master branch each time code is
released to PyPI. Development happens on separate branches (or forks) which are then merged into master via pull
requests.

Repository structure

The GC3Pie code repository has the following top-level structure; there is one subdirectory for each of the main parts
of GC3Pie:

• The gc3libs directory contains the GC3Libs code, which is the core of GC3Pie. GC3Libs are extensively
described in the API section of this document; read the module descriptions to find out where your new suggested
functionality would suit best. If unsure, ask on the GC3Pie mailing list.

• The gc3utils directory contains the sources for the low-level GC3Utils command-line utilities.

• The gc3apps directory contains the sources for higher level scripts that implement some computational use
case of independent interest.

The gc3apps directory contains one subdirectory per application script. Actually, each subdirectory can
contain one or more Python scripts, as long as they form a coherent bundle; for instance, Rosetta is a suite of
applications in computational biology: there are different GC3Apps script corresponding to different uses of the
Rosetta suite, all of them grouped into the rosetta subdirectory.

Subdirectories of the gc3apps directory follow this naming convention:

– the directory name is the main application name, if the application that the scripts wrap is a known,
publicly-released computational application (e.g., Rosetta, GAMESS)

2.3. Contributors documentation 87

mailto:gc3pie@googlegroups.com
https://github.com/
http://github.com/uzh/gc3pie/
https://git-scm.org/
https://help.github.com/articles/using-pull-requests/
http://pypi.python.org/
http://pypi.python.org/
https://help.github.com/articles/using-pull-requests/
https://help.github.com/articles/using-pull-requests/
mailto:gc3pie@googlegroups.com
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.6.1

– the directory name is the requestor’s name, if the application that the scripts wrap is some research code
that is being internally developed. For instance, the bf.uzh.ch directory contains scripts that wrap code
for economic simulations that is being developed at the Banking and Finance Institute of the University of
Zurich

Package generation

Due to issue 329, we don’t use the automatic discovery feature of setuptools, so the files included in the distributed
packages are those in the MANIFEST.in file, please check The MANIFEST.in template section of the python docu-
mentation for a syntax reference. We usually include only code, documentation, and related files. We also include the
regression tests, but we do not include the application tests in gc3apps/*/test directories.

Testing the code

In developing GC3Pie we try to use a Test Driven Development approach, in the light of the quote: It’s tested or it’s
broken. We use tox and pytest as test runners, which make creating tests very easy.

Running the tests

You can both run tests on your current environment using pytest or use tox_ to create and run tests on separate
environments. We suggest you to use pytest while you are still fixing the problem, in order to be able to run only
the failing test, but we strongly suggest you to run tox before committing your code.

Running tests with pytest

In order to have the pytest program, you need to install pytest_ in your current environment and gc3pie must be
installed in develop mode:

pip install pytest
python setup.py develop

Then, from the top level directory, run the tests with:

pytest -v

PyTest will then crawl the directory tree looking for available tests. You can also specify a subset of the available sets,
by:

• specifying the directory from which nose should start looking for tests:

Run only backend-related tests
pytest -v gc3libs/backends/

• specifying the file containing the tests you want to run:

Run only tests contained in a specific file
pytest -v gc3libs/tests/test_session.py

• specifying the id of the test (a test ID is the file name, a double colon, and the test function name):

Run only test `test_engine_limits` in file `test_engine.py`
pytest test_engine.py::test_engine_limits

88 Chapter 2. Table of Contents

http://www.bf.uzh.ch/
http://www.bf.uzh.ch/
https://github.com/uzh/gc3pie/issues/329
http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template
http://en.wikipedia.org/wiki/Test-driven_development
http://tox.testrun.org/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/

gc3pie Documentation, Release 2.6.1

Running multiple tests

In order to test GC3Pie against multiple version of python we use tox, which creates virtual environments for all
configured python version, runs pytest inside each one of them, and prints a summary of the test results.

You don’t need to have tox installed in the virtual environment you use to develop gc3pie, you can create a new
virtual environment and install tox on it with.

Running tox is straightforward; just type tox on the command-line in GC3Pie’s top level source directory.

The default tox.ini file shipped with GC3Pie attempts to test all Python versions from 2.4 to 2.7 (inclusive). If you
want to run tests only for a specific version of python, for instance Python 2.6, use the -e option:

tox -e py26
[...]
Ran 118 tests in 14.168s

OK (SKIP=9)
__ [tox summary] _____________
→˓__
[TOX] py26: commands succeeded
[TOX] congratulations :)

Option -r instructs tox to re-build the testing virtual environment. This is usually needed when you update the
dependencies of GC3Pie or when you add or remove command line programs or configuration files. However, if you
feel that the environments can be unclean, you can clean up everything by:

1) deleting all the *.pyc file in your source tree:

find . -name '*.pyc' -delete

2) deleting and recreating tox virtual environments:

tox -r

Writing tests

Please remember that it may be hard to understand, whenever a test fails, if it’s a bug in the code or in the tests!
Therefore please remember:

• Try to keep tests as simple as possible, and always simpler than the tested code. (Debugging is twice as hard as
writing the code in the first place., Brian W. Kernighan and P. J. Plauger)

• Write multiple indipendent tests to test different possible behavior and/or different methods of a class.

• Tests should cover methods and functions, but also specific use cases.

• If you are fixing a bug, it’s good practice to write a test to check if the bug is still there, in order to avoid to
re-include the bug in the future.

• Tests should clean up every temporary file they create.

Writing tests is very easy: just create a file whose name begins with test_, then put in it some functions which name
begins with test_; the pytest framework will automatically call each one of them. Moreover, pytest will run also any
pytest which will be found in the code.

The module gc3libs.testing contains a few helpers that make writing GC3Pie tests easier.

Full documentation of the pytest framework is available at the pytest website.

2.3. Contributors documentation 89

http://tox.testrun.org/latest/
https://docs.pytest.org/en/latest/
http://tox.testrun.org/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/
https://docs.pytest.org/en/latest/

gc3pie Documentation, Release 2.6.1

Organizing tests

Each single python file should have a test file inside a tests subpackage with filename created by prefixing test_
to the filename to test. For example, if you created a file foo.py, there should be a file tests/test_foo.py
which will contains tests for foo.py.

Even though following the naming convention above is not always possible, each test regarding a specific compo-
nent should be in a file inside a tests directory inside that component. For instance, tests for the subpackage
gc3libs.persistence are located inside the directory gc3libs/persistence/tests but are not named after the
specific file.

Coding style

Python code should be written according to ‘PEP 8‘_ recommendations. (And by this we mean not just the code
style.)

Please take the time to read PEP 8 through, as it is widely-used across the Python programming community – it will
benefit your contribution to any free/open-source Python project!

Anyway, here’s a short summary for the impatient:

• use English nouns to name variables and classes; use verbs to name object methods.

• use 4 spaces to indent code; never use TAB characters.

• use lowercase letters for method and variable names; use underscores _ to separate words in multi-word identi-
fiers (e.g., lower_case_with_underscores)

• use “CamelCase” for class and exception names.

• but, above all, do not blindly follow the rules and try to do the thing that enhances code clarity and readability!

Here’s other code conventions that apply to GC3Pie code; since they are not always widely followed or known, a short
rationale is given for each of them.

• Every class and function should have a docstring. Use reStructuredText markup for docstrings and documenta-
tion text files.

Rationale: A concise English description of the purpose of a function can be faster to read than the code. Also,
undocumented functions and classes do not appear in this documentation, which makes them invisible to new
users.

• Use fully-qualified names for all imported symbols; i.e., write import foo and then use foo.bar() instead
of from foo import bar. If there are few imports from a module, and the imported names do clearly
belong to another module, this rule can be relaxed if this enhances readability, but never do use unqualified
names for exceptions.

Rationale: There are so many functions and classes in GC3Pie, so it may be hard to know to which module the
function count belongs. (Think especially of people who have to bugfix a module they didn’t write in the first
place.)

• When calling methods or functions that accept both positional and optional arguments like:

def foo(a, b, key1=defvalue1, key2=defvalue2):

always specify the argument name for optional arguments, which means do not call:

foo(1, 2, value1, value2)

but call instead:

90 Chapter 2. Table of Contents

http://www.python.org/dev/peps/pep-0008/
http://docutils.sourceforge.net/rst.html

gc3pie Documentation, Release 2.6.1

foo(1, 2, key1=value1, key2=value2)

Rationale: calling the function with explicit argument names will reduce the risk of hit some compatibility
issues. It is perfectly fine, from the point of view of the developer, to change the signature of a function by
swapping two different optional arguments, so this change can happen any time, although changing positional
arguments will break backward compatibility, and thus it’s usually well advertised and tested.

• Use double quotes " to enclose strings representing messages meant for human consumption (e.g., log messages,
or strings that will be printed on the users’ terminal screen).

Rationale: The apostrophe character ' is a normal occurrence in English text; use of the double quotes mini-
mizes the chances that you introduce a syntax error by terminating a string in its middle.

• Follow normal typographic conventions when writing user messages and output; prefer clarity and avoid ambi-
guity, even if this makes the messages longer.

Rationale: Messages meant to be read by users will be read by users; and if they are not read by users, they will
be fired back verbatim on the mailing list on the next request for support. So they’d better be clear, or you’ll find
yourself wondering what that message was intended to mean 6 months ago.

Common typographical conventions enhance readability, and help users identify lines of readable text.

• Use single quotes ' for strings that are meant for internal program usage (e.g., attribute names).

Rationale: To distinguish them visually from messages to the user.

• Use triple quotes """ for docstrings, even if they fit on a single line.

Rationale: Visual distinction.

• Each file should have this structure:

– the first line is the hash-bang line,

– the module docstring (explain briefly the module purpose and features),

– the copyright and licence notice,

– module imports (in the order suggested by PEP 8)

– and then the code. . .

Rationale: The docstring should be on top so it’s the first thing one reads when inspecting a file. The copyright
notice is just a waste of space, but we’re required by law to have it.

Documentation

The documentation can be found in gc3pie/docs. It is generated using Sphinx (http://sphinx-doc.org/contents.html).

GC3Pie documentation is divided in three sections:

• User Documentation: info on how to install, configure and run GC3Pie applications.

• Programmer Documentation: info for programmers who want to use the GC3Pie libraries to write their own
scripts and applications.

• Contributors documentation: detailed information on how to contribute to GC3Pie and get your code included
in the main library.

The GC3Libs programming API <gc3libs_> is the most relevant part of the docs for developers contributing code and
is generated automatically from the docstrings inside the modules. Automatic documentation in Sphinx is described
under http://sphinx-doc.org/tutorial.html#autodoc. While updating the docs of existing modules is simply done by
running make html, adding documentation for a new module requires one of the following two procedures:

2.3. Contributors documentation 91

http://en.wikipedia.org/wiki/Shebang_(Unix)
https://www.python.org/dev/peps/pep-0008
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/tutorial.html#autodoc

gc3pie Documentation, Release 2.6.1

• Add a reference to the new module in docs/programmers/api/index.rst. Additionally, create a file
that enables automatic documentation for the module. For the module core.py, for example, automatic doc-
umentation is enabled by a file docs/programmers/api/gc3libs/core.rst with the following con-
tent:

`gc3libs.core`
==============

.. automodule:: gc3libs.core
:members:

• Execute the script docs/programmers/api/makehier.sh, which automates the above. Note that the
makehier.sh script will re-create all .rst files for all GC3Pie modules, so check if there were some unex-
pected changes (e.g., with git status) before you commit!

Docstrings are written in reStructuredText format. To be able to cross-reference between differen objects in the docu-
mentation, you should be familiar with Sphinx domains in general and the Python domain in particular.

Questions?

Please write to the GC3Pie mailing list; we try to do our best to answer promptly.

2.4 Publications

This is an index of papers, slide decks, and other assorted material on GC3Pie. Most recent contributions are listed
first.

If you would like to add your contributions here, please send a message to the GC3Pie mailing-list (or use the web
interface).

2.4.1 GC3Pie overviews

The following slides and papers provide an overview of GC3Pie and its features. (Most recent entries first.)

• GC3Pie: orchestrating large-scale execution of scientific applications. Presentation of GC3Pie and its features,
especially focusing on the GC3Pie backend for EasyBuild. Held at the HPC-CH forum. June 11, 2015.

• GC3Pie: orchestrating large-scale execution of scientific applications. Presentation of GC3Pie and its features
at the HPC-CH forum. June 18, 2014.

• Presentation of GC3Pie and GC3Libs (PDF) at the a private meeting with the developers of iBRAIN2/3 (later
renamed to screeningBee), May 2012.

• GC3Pie: A Python framework for high-throughput computing (MAFFIOLETTI, Sergio, and Riccardo Murri).
Proceedings of the EGI Community Forum 2012/EMI Second Technical Conference (EGICF12-EMITC2). 26-
30 March, 2012. Munich, Germany. Published online at, id. 143. Vol. 1. 2012.

• Presentation of GC3Pie and GC3Libs (PDF) at the NorduGrid conference 2011.

2.4.2 Programming examples

The following slides focus on GC3Libs programming. (Most recent entries first.)

• Global Optimization with GC3Pie (PDF). Poster presented at the EuroSciPy 2013 conference, introducing the
GC3Pie numerical optimizer.

92 Chapter 2. Table of Contents

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/domains.html#the-python-domain
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
mailto:gc3pie@googlegroups.com
mailto:gc3pie@googlegroups.com
https://groups.google.com/forum/#!forum/gc3pie
https://groups.google.com/forum/#!forum/gc3pie
http://gc3pie.googlecode.com/svn/wiki/slides/hpc-ch.2015-06-11/slides.pdf
http://gc3pie.googlecode.com/svn/wiki/slides/hpc-ch.2014-06-18/gc3pie.pdf
http://gc3pie.googlecode.com/svn/wiki/slides/iBRAIN2-2012.05/talk.pdf
http://screeningbee.sourceforge.net/doku.php
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=162
http://gc3pie.googlecode.com/svn/wiki/slides/ng2011-2011.05/gc3pie-ng2011.pdf
http://indico.hep.lu.se/conferenceDisplay.py?confId=1047
http://gc3pie.googlecode.com/svn/wiki/posters/euroscipy2011/gc3pie-euroscipy2013.pdf
http://www.euroscipy.org/conference/euroscipy2013

gc3pie Documentation, Release 2.6.1

• Computational workflows with GC3Pie (PDF). Poster presented at the EGI Community Forum 2012.

• Computational workflows with GC3Pie (PDF). Poster presented at the EuroSciPy 2011 conference.

• Introduction to GC3Pie and its programming model (HTML, PDF); slides presented at the Advanced School on
High Performance and Grid Computing at ICTP Trieste.

• Introduction to GC3Libs programming (HTML, PDF); slides presented at the SMSCG Project meeting 2011.

• Introduction to GC3Libs programming (HTML, PDF); slides presented at a private meeting with the Selectome
developers.

2.4.3 Use of GC3Pie in scientific applications

These papers and presentations cover specific tools built on top of GC3Pie, or applications of GC3Pie to research in a
specific domain. (Most recent entries first.)

• TRAL: Tandem repeat annotation library (Schaper, E., Korsunsky, A., Messina, A., Murri, R., Pečerska, J.,
Stockinger, H., . . . & Anisimova, M.). Bioinformatics, btv306 (2015).

• Selectome update: quality control and computational improvements to a database of positive selection (Moretti,
S., Laurenczy, B., Gharib, W. H., Castella, B., Kuzniar, A., Schabauer, H., . . . & Robinson-Rechavi, M.).
Nucleic acids research, 42(D1), D917-D921, 2014.

• Wireless Mesh Networks and Cloud Computing for Real Time Environmental Simulations (Kropf, P., Schiller,
E., Brunner, P., Schilling, O., Hunkeler, D., & Lapin, A.). In Recent Advances in Information and Communi-
cation Technology (pp. 1-11). Springer International Publishing. * Real-Time Environmental Monitoring for
Cloud-Based Hydrogeological Modeling with HydroGeoSphere (Lapin, A., Schiller, E., Kropf, P., Schilling, O.,
Brunner, P., Kapic, A. J., . . . & Maffioletti, S.). In High Performance Computing and Communications, 2014
IEEE 6th Intl Symp on Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software and
Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on (pp. 959-965). IEEE, August 2014.

• Thermal and Hydrological Response of Rock Glaciers to Climate Change: A Scenario Based Simulation Study
(Apaloo, J.). University of Waterloo, Canada, 2014.

• Parameter estimation of complex mathematical models of human physiology using remote simulation distributed
in scientific cloud (Kulhanek, T., Mateják, M., Silar, J., & Kofranek, J.). In Biomedical and Health Informatics
(BHI), 2014 IEEE-EMBS International Conference on (pp. 712-715). IEEE, June 2014.

• Towards a swiss national research infrastructure (Kunszt, P., Maffioletti, S., Flanders, D., Eurich, M., Bohnert,
T., Edmonds, A., . . . & Schiller, E.). arXiv preprint arXiv:1404.7608.

• User Interaction and Data Management for Large Scale Grid Applications. Journal of Grid Computing (Costan-
tini, A., Gervasi, O., Zollo, F., & Caprini, L.), 12(3), 485-497, 2014.

• Application of large-scale computing infrastructure for diverse environmental research applications using
GC3Pie (Maffioletti, S., Dawes, N., Bavay, M., Sarni, S., & Lehning, M.). In EGU General Assembly Con-
ference Abstracts (Vol. 15, p. 13222). April 2013.

• gcodeml: A Grid-enabled Tool for Detecting Positive Selection in Biological Evolution (Moretti, S., Murri, R.,
Maffioletti, S., Kuzniar, A., Castella, B., Salamin, N., . . . & Stockinger, H.). Studies in health technology and
informatics, 175, 59-68 (2012).

• A Grid execution model for Computational Chemistry Applications using the GC3Pie framework and AppPot
(Costantini, A., Murri, R., Maffioletti, S., Rampino, S., & Laganà, A.). Computational Science and Its Applica-
tions–ICCSA 2012. Springer Berlin Heidelberg, 2012. 401-416.

• Running GAMESS jobs with ggamess. Slides presented at a Baldridge Research Group meeting, Sept 2012.

2.4. Publications 93

http://gc3pie.googlecode.com/svn/wiki/posters/egi-community-forum-2012/gc3pieegi2012.pdf
http://cf2012.egi.eu/
http://gc3pie.googlecode.com/svn/wiki/posters/euroscipy2011/gc3pie-euroscipy2011.pdf
http://www.euroscipy.org/conference/euroscipy2011
http://gc3pie.googlecode.com/svn/wiki/slides/grid-school-trieste-2011.04/trieste.html
http://gc3pie.googlecode.com/svn/wiki/slides/grid-school-trieste-2011.04/trieste.pdf
http://cdsagenda5.ictp.trieste.it/full_display.php?ida=a10135
http://cdsagenda5.ictp.trieste.it/full_display.php?ida=a10135
http://www.ictp.it
http://gc3pie.googlecode.com/svn/wiki/slides/smscg-meeting-2011.03/lausanne.html
http://gc3pie.googlecode.com/svn/wiki/slides/smscg-meeting-2011.03/lausanne.pdf
http://www.smscg.ch/WP/management/meetings/
http://gc3pie.googlecode.com/svn/wiki/slides/selectome-lausanne-2011.02/lausanne.html
http://gc3pie.googlecode.com/svn/wiki/slides/selectome-lausanne-2011.02/lausanne.pdf
http://wiki.isb-sib.ch/grid-selectome/
http://bioinformatics.oxfordjournals.org/content/early/2015/05/17/bioinformatics.btv306.short
http://nar.oxfordjournals.org/content/42/D1/D917.short
http://link.springer.com/chapter/10.1007/978-3-319-06538-0_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7056861
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7056861
https://uwspace.uwaterloo.ca/handle/10012/8142
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6864463
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6864463
http://arxiv.org/pdf/1404.7608
http://link.springer.com/article/10.1007/s10723-014-9300-0
http://adsabs.harvard.edu/abs/2013EGUGA..1513222M
http://adsabs.harvard.edu/abs/2013EGUGA..1513222M
http://arxiv.org/pdf/1203.3092
http://link.springer.com/content/pdf/10.1007/978-3-642-31125-3_31.pdf
http://gc3pie.googlecode.com/svn/wiki/slides/kb2011.09/ggames.pdf
http://www.oci.uzh.ch/group.pages/baldridge/index.php

gc3pie Documentation, Release 2.6.1

• The MP2 binding energy of the ethene dimer and its dependence on the auxiliary basis sets: a benchmark study
using a newly developed infrastructure for the processing of quantum chemical data (Glöß, A., Brändle, M. P.,
Klopper, W., & Lüthi, H. P.). Molecular Physics, 110(19-20), 2523-2534 (2012).

• Three tools for high-throughput computing with GAMESS (PDF). Slides presented at a Baldridge Research
Group meeting, May 2011.

• Enabling High-Throughput Computational Chemistry on the Grid (PDF). Poster presented at the EGI User
Forum 2011.

• GRunDB: a tool for validating QM algorithms in GAMESS-US (PDF). Slides presented at the Swiss Grid Day
2010.

• GC3Pie and related tools for high-throughput computational chemistry (PowerPoint PPT slides). Presentation
held at the Databases in Quantum Chemistry workshop, September 22-25, 2010 in Zaragoza, Spain.

2.5 List of contributors to GC3Pie

This is a list of people that have contributed to GC3Pie, in any form: be it enhancements to the code or testing out
releases and new features, or simply contributing suggestions and proposing enhancements. To them all, our gratitude
for trying to make GC3Pie a better tool.

The list is sorted by last name. Please send an email to <gc3pie-dev@googlegroups.com> for corrections.

• Tyanko Aleksiev <tyanko.alexiev@gmail.com>

• Niko Ehrenfeuchter <nikolaus.ehrenfeuchter@unibas.ch>

• Benjamin Jonen <benjamin.jonen@gmail.com>

• Sergio Maffioletti <sergio.maffioletti@gc3.uzh.ch>

• Daniel McDonald <daniel.mcdonald@uzh.ch>

• Antonio Messina <arcimboldo@gmail.com>

• Mark Monroe <markjmonroe@yahoo.com>

• Riccardo Murri <riccardo.murri@gmail.com>

• Michael Packard <mrghort@gmail.com>

• Xin Zhou <xin.zhou1983@gmail.com>

2.6 Glossary

API Acronym of Application Programming Interface. An API is a description of the way one piece of soft-
ware asks another program to perform a service (quoted from: http://www.computerworld.com/s/article/43487/
Application_Programming_Interface which see for a more detailed explanation).

Command-line The sequence of words typed at the terminal prompt in order to run a specified application.

Command-line option Arguments to a command (i.e., words on the command line) that select variants to the usual
behavior of the command. For instance, a command-line option can request more verbose reporting.

Traditionally, UNIX command-line options consist of a dash (-), followed by one or more lowercase letters, or
a double-dash (--) followed by a complete word or compound word.

For example, the words -h or --help usually instruct a command to print a short usage message and exit
immediately after.

94 Chapter 2. Table of Contents

http://www.tandfonline.com/doi/abs/10.1080/00268976.2012.708793
http://www.tandfonline.com/doi/abs/10.1080/00268976.2012.708793
http://gc3pie.googlecode.com/svn/wiki/slides/kb2011.05/gc3pie-for-compchem.pdf
http://www.oci.uzh.ch/group.pages/baldridge/index.php
http://www.oci.uzh.ch/group.pages/baldridge/index.php
http://gc3pie.googlecode.com/svn/wiki/posters/egi-user-forum-2011/GC3Pie_EGI-UF2011.pdf
http://uf2011.egi.eu/
http://uf2011.egi.eu/
http://gc3pie.googlecode.com/svn/wiki/slides/sgd2010/grundb.pdf
http://www.swing-grid.ch/event/242148-swiss-grid-day-2010
http://www.swing-grid.ch/event/242148-swiss-grid-day-2010
http://gc3pie.googlecode.com/svn/wiki/slides/zcam-zaragoza-2010.09/ZCAM_workshop_20100923_final.pptm
http://neptuno.unizar.es/events/qcdatabases2010/
mailto:tyanko.alexiev@gmail.com
mailto:nikolaus.ehrenfeuchter@unibas.ch
mailto:benjamin.jonen@gmail.com
mailto:sergio.maffioletti@gc3.uzh.ch
mailto:daniel.mcdonald@uzh.ch
mailto:arcimboldo@gmail.com
mailto:markjmonroe@yahoo.com
mailto:riccardo.murri@gmail.com
mailto:mrghort@gmail.com
mailto:xin.zhou1983@gmail.com
http://www.computerworld.com/s/article/43487/Application_Programming_Interface
http://www.computerworld.com/s/article/43487/Application_Programming_Interface

gc3pie Documentation, Release 2.6.1

Core A single computing unit. This was called a CPU until manufacturers started packing many processing units
into a single package: now the term CPU is used for the package, and core is one of the several independent
processing units within the package.

CPU Time The total time that computing units (processor core) are actively executing a job. For single-threaded
jobs, this is normally less then the actual duration (‘wall-clock time’ or walltime), because some time is lost in
I/O and system operations. For parallel jobs the CPU time is normally larger than the duration, because several
processor cores are active on the job at the same time; the quotient of the CPU time and the duration measures
the efficiency of the parallel job.

Job A computational job is a single run of a non-interactive application. The prototypical example is a run of
GAMESS on a single input file.

Persistent Used in the sense of preserved across program stops and system reboots. In practice, it just means that the
relevant data is stored on disk or in some database.

Resource Short for computational resource: any cluster or Grid where a job can run.

State A one-word indication of a computational job execution status (e.g., RUNNING or TERMINATED). The terms
state and status are used interchangeably in GC3Pie documentation.

STDERR Abbreviation for “standard error stream”; it is the sequence of all text messages that a command prints to
inform the user of problems or to report on operations progress. The Linux/UNIX system allows two separate
output streams, one for output proper, named STDOUT , and STDERR for “error messages”. It is entirely up to
the command to tag a message as “standard output” or “standard error”.

STDOUT Abbreviation for “standard output stream”. It is the sequence of all characters that constitute the output of
a command. The Linux/UNIX system allows two separate output streams, one for output proper, and one for
“error messages”, dubbed STDERR. It is entirely up to the command to tag a message as “standard output” or
“standard error”.

Session A persistent collection of GC3Pie tasks and jobs. Sessions are used by The GC3Apps software to store job
status across program runs. A session is specified by giving the filesystem path to a session directory: the
directory contains some files with meta-data about the tasks that comprise the session. It is also possible to
simulate a session by specifying a task store URL (path to a filesystem directory where the jobs are stored, or
connection URL to a database); in this case the session meta-data will be reconstructed from the set of tasks in
the store.

Walltime Short for wall-clock time: indicates the total running time of a job.

2.6. Glossary 95

http://www.msg.ameslab.gov/gamess/
http://gc3pie.googlecode.com/

gc3pie Documentation, Release 2.6.1

96 Chapter 2. Table of Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

97

gc3pie Documentation, Release 2.6.1

98 Chapter 3. Indices and tables

Python Module Index

g
gc3utils, 86
gc3utils.frontend, 86

99

gc3pie Documentation, Release 2.6.1

100 Python Module Index

Index

A
API, 94

C
Command-line, 94
Command-line option, 94
Core, 95
CPU Time, 95

G
gc3utils (module), 86
gc3utils.frontend (module), 86

J
Job, 95

M
main() (in module gc3utils.frontend), 87

P
Persistent, 95
Python Enhancement Proposals

PEP 8, 91

R
Resource, 95

S
Session, 95
State, 95
STDERR, 95
STDOUT, 95

W
Walltime, 95

101

	Introduction
	Table of Contents
	User Documentation
	Programmer Documentation
	Contributors documentation
	Publications
	List of contributors to GC3Pie
	Glossary

	Indices and tables
	Python Module Index
	Index

