
gc3pie Documentation
Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Sergio Maffioletti, Antonio Messina, Mark Monroe, Riccardo Murri, Mike Packard

October 12, 2015

Contents

1 Introduction 1

2 Table of Contents 3
2.1 User Documentation . 3
2.2 Programmer Documentation . 55
2.3 Developer Documentation . 146
2.4 List of contributors to GC3Pie . 153
2.5 Glossary . 153

3 Indices and tables 155

Python Module Index 157

i

ii

CHAPTER 1

Introduction

GC3Pie is a Python package for running large job campaigns on diverse batch-oriented execution environments
(for instance: a Sun/Oracle/Open Grid Engine cluster, or the Swiss National Distributed Computing Infrastructure
SMSCG). It also provides facilities for implementing command-line driver scripts, in the form of Python object
classes whose behavior can be customized by overriding specified object methods.

GC3Pie documentation is divided in three sections:

• User Documentation: info on how to install, configure and run GC3Pie applications.

• Programmer Documentation: info for programmers who want to use the GC3Pie libraries to write their own
scripts and applications.

• Developer Documentation: detailed information on how to contribute to GC3Pie and get your code included
in the main library.

1

http://gridengine.org/blog/2011/11/23/what-now/
http://www.smscg.ch/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

2 Chapter 1. Introduction

CHAPTER 2

Table of Contents

2.1 User Documentation

This section describes how to install and configure GC3Pie, and how to run The GC3Apps software and The
GC3Utils software.

2.1.1 Table of Contents

Installation of GC3Pie

Quick start

We provide an installation script which automatically tries to install GC3pie in your home directory. The quick
installation procedure has only been tested on variants of the GNU/Linux operating system. (However, the script
should work on MacOSX as well, provided you follow the preparation steps outlined in the “MacOSX installation”
section below.)

To install GC3Pie just type this at your terminal prompt:

sh -c "$(wget -O- http://gc3pie.googlecode.com/svn/install.sh)"

If wget is not installed in your computer, you can use curl instead:

sh -c "$(curl -s http://gc3pie.googlecode.com/svn/install.sh)"

The above command creates a directory $HOME/gc3pie and installs the latest release of GC3Pie and all its
dependencies into it.

In case you have trouble running the installation script, please send an email to gc3pie@googlegroups.com. (In
order to post a message, you first need to subscribe. To post a message without being subscribed, please use the
web interface at http://dir.gmane.org/gmane.comp.python.gc3pie.) Include the full output of the script in your
email, in order to help us to identify the problem.

Now you can check your GC3Pie installation; follow the on-screen instructions to activate the virtual environment.
Then, just type the command:

gc3utils --help

and you should see the following output appear on your screen:

Usage: gc3utils COMMAND [options]

Command `gc3utils` is a unified front-end to computing resources.
You can get more help on a specific sub-command by typing::

gc3utils COMMAND --help
where command is one of these:

3

mailto:gc3pie@googlegroups.com
http://dir.gmane.org/gmane.comp.python.gc3pie

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

clean
cloud
get
info
kill
resub
select
servers
stat
tail

If you get some errors, do not despair! The GC3Pie users mailing-list is there to help you :-) (You can also post to
the same forum using a web interface at http://dir.gmane.org/gmane.comp.python.gc3pie.)

With the default configuration file, GC3Pie is set up to only run jobs on the computer where it is installed. To
run jobs on remote resources, you need to edit the configuration file; the ConfigurationFile Wiki page provides an
explanation of the syntax.

Non-standard installation options

The installation script accept a few options that select alternatives to the standard behavior. In order to use these
options, you have to:

1. download the installation script into a file named install.sh:

wget http://gc3pie.googlecode.com/svn/install.sh

2. run the command:

sh ./install.sh [options]

replacing the string [options] with the actual options you want to pass to the script.

The accepted options are as follows:

--feature LIST

Install optional features (comma-separated list). Currently defined features are:

• openstack: support running jobs in VMs on OpenStack clouds

• ec2: support running jobs in VMs on OpenStack clouds

• optimizer: install math libraries needed by the optimizer library

For instance, to install all features use -a openstack,ec2,optimizer. To install
no optional feature, use -a none.

By default, all cloud-related features are installed.

-d DIRECTORY

Install GC3Pie in location DIRECTORY instead of $HOME/gc3pie

--overwrite

Overwrite the destination directory if it already exists. Default behavior is to abort instal-
lation.

--develop

Instead of installing the latest release of GC3Pie, it will install the development branch
from the SVN repository.

--yes

Run non-interactively, and assume a “yes” reply to every question.

-p PYTHON

4 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com
http://dir.gmane.org/gmane.comp.python.gc3pie
http://code.google.com/p/gc3pie/wiki/ConfigurationFile/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Uses the given PYTHON program as python interpreter. By default the installation script
looks for a python binary in the standard $PATH.

--no-gc3apps

Do not install any of the GC3Apps, e.g., gcodeml, grosetta and ggamess.

Manual installation

In case you can’t or don’t want to use the automatic installation script, the following instructions will guide you
through all the steps needed to manually install GC3Pie on your computer.

These instructions show how to install GC3Pie from the GC3 source repository into a separate python environment
(called virtualenv). Installation into a virtualenv has two distinct advantages:

• All code is confined in a single directory, and can thus be easily replaced/removed.

• Better dependency handling: additional Python packages that GC3Pie depends upon can be installed even
if they conflict with system-level packages.

0. Install software prerequisites:

• On Debian/Ubuntu, install packages: subversion, python-dev, python-profiler and the
C/C++ compiler:

apt-get install subversion python-dev python-profiler gcc g++

• On CentOS5, install packages subversion and python-devel and the C/C++ compiler:

yum install subversion python-devel gcc gcc-c++

• On other Linux distributions, you will need to install:

– the svn command (from the SubVersion VCS)

– Python development headers and libraries (for installing extension libraries written in C/C++)

– the Python package pstats (it’s part of the Python standard library, but sometimes it needs
separate installation)

– a C/C++ compiler (this is usually installed by default).

1. If virtualenv is not already installed on your system, get the Python package and install it:

wget http://pypi.python.org/packages/source/v/virtualenv/virtualenv-1.7.tar.gz
tar -xzf virtualenv-1.7.tar.gz && rm virtualenv-1.7.tar.gz
cd virtualenv-1.7/

If you are installing as root, the following command is all you need:

python setup.py install

If instead you are installing as a normal, unprivileged user, things get more complicated:

export PYTHONPATH=$HOME/lib64/python:$HOME/lib/python:$PYTHONPATH
export PATH=$PATH:$HOME/bin
mkdir -p $HOME/lib/python
python setup.py install --home $HOME

You will also have to add the two export lines above to the:

• $HOME/.bashrc file, if using the bash shell or to the

• $HOME/.cshrc file, if using the tcsh shell.

In any case, once virtualenv has been installed, you can exit its directory and remove it:

2.1. User Documentation 5

http://pypi.python.org/pypi/virtualenv/1.7
http://subversion.apache.org/
http://pypi.python.org/pypi/virtualenv/1.7

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

cd ..
rm -rf virtualenv-1.7

2. Create a virtualenv to host the GC3Pie installation, and cd into it:

virtualenv --system-site-packages $HOME/gc3pie
cd $HOME/gc3pie/
source bin/activate

In this step and in the following ones, the directory $HOME/gc3pie is going to be the installation folder of
GC3Pie. You can change this to another directory path; any directory that’s writable by your Linux account
will be OK.

If you are installing system-wide as root, we suggest you install GC3Pie into /opt/gc3pie instead.

3. Check-out the gc3pie files in a src/ directory:

svn co http://gc3pie.googlecode.com/svn/branches/2.0/gc3pie src

4. Install the gc3pie in “develop” mode, so any modification pulled from subversion is immediately reflected
in the running environment:

cd src/
env CC=gcc ./setup.py develop
cd .. # back into the `gc3pie` directory

This will place all the GC3Pie command into the gc3pie/bin/ directory.

5. GC3Pie comes with driver scripts to run and manage large families of jobs from a few selected applications.
These scripts are not installed by default because not everyone needs them.

Run the following commands to install the driver scripts for the applications you need:

if you are insterested in GAMESS, do the following
ln -s '../src/gc3apps/gamess/ggamess.py' bin/ggamess

if you are insterested in Rosetta, do the following
ln -s '../src/gc3apps/rosetta/gdocking.py' bin/gdocking
ln -s '../src/gc3apps/rosetta/grosetta.py' bin/grosetta

if you are insterested in Codeml, do the following
ln -s '../src/gc3apps/codeml/gcodeml.py' bin/gcodeml

6. Now you can check your GC3Pie installation; just type the command:

gc3utils --help

and you should see the following output appear on your screen:

Usage: gc3utils COMMAND [options]

Command `gc3utils` is a unified front-end to computing resources.
You can get more help on a specific sub-command by typing::
gc3utils COMMAND --help

where command is one of these:
clean
cloud
get
info
kill
resub
select
servers
stat
tail

6 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

If you get some errors, do not despair! The GC3Pie users mailing-list <gc3pie@googlegroups.com>
is there to help you :-) (You can also post to the same forum using the web interface at
http://dir.gmane.org/gmane.comp.python.gc3pie.)

7. With the default configuration file, GC3Pie is set up to only run jobs on the computer where it is installed.
To run jobs on remote resources, you need to edit the configuration file; the ConfigurationFile Wiki page
provides an explanation of the syntax.

Upgrade

If you used the installation script, the fastest way to upgrade is just to reinstall:

0. De-activate the current GC3Pie virtual environment:

deactivate

(If you get an error “command not found”, do not worry and proceed on to the next step; in case of other
errors please stop here and report to the GC3Pie users mailing-list <mailto:gc3pie.googlegroups.com>.)

1. Move the $HOME/gc3pie directory to another location, e.g.:

mv $HOME/gc3pie $HOME/gc3pie.OLD

2. Reinstall GC3Pie using the quick-install script (top of this page).

3. Once you have verified that your new installation is working, you can remove the $HOME/gc3pie.OLD
directory.

If instead you installed GC3Pie using the “manual installation” instructions, then the following steps will update
GC3Pie to the latest version in the code repository:

1. cd to the directory containing the GC3Pie virtualenv; assuming it is named gc3pie as in the above instal-
lation instructions, you can issue the commands:

cd $HOME/gc3pie # use '/opt/gc3pie' if root

2. Activate the virtualenv:

source bin/activate

3. Upgrade the gc3pie source and run the setup.py script again:

cd src
svn up
env CC=gcc ./setup.py develop

Note: A major restructuring of the SVN repository took place in r1124 to r1126 (Feb. 15, 2011); if your sources
are older than SVN r1124, these upgrade instructions will not work, and you must reinstall completely. You can
check what version the SVN sources are, by running the svn info command in the src directory: watch out for the
Revision: line.

MacOSX Installation

Installation on MacOSX machines is possible, however there are still a few issues. If you need MacOSX support,
please let us know on the GC3Pie users mailing-list <mailto:gc3pie@googlegroups.com> or by posting a message
using the web interface at http://dir.gmane.org/gmane.comp.python.gc3pie.

1. Standard usage of the installation script (i.e., with no options) works, but you have to use curl since wget is
not installed by default.

2. In order to install GC3Pie you will need to install XCode and, in some of the MacOSX versions, also the
Command Line Tools for XCode

2.1. User Documentation 7

http://dir.gmane.org/gmane.comp.python.gc3pie
http://code.google.com/p/gc3pie/wiki/ConfigurationFile/
http://dir.gmane.org/gmane.comp.python.gc3pie
https://developer.apple.com/xcode/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

3. Options can only be given in the abbreviated one-letter form (e.g., -d); the long form (e.g., --directory)
will not work.

4. The shellcmd backend of GC3Pie depends on the GNU time command, which is not installed on MacOSX
by default. This means that with a standard MacOSX installation the shellcmd resource will not work.
However:

• other resources, like pbs via ssh transport, will work.

• you can install the GNU time command either via MacPorts, Fink, Homebrew or from the this url.
After installing it you don’t need to update your PATH environment variable, it’s enough to set the
time_cmd option in your GC3Pie configuration file.

HTML Documentation

HTML documentation for the GC3Libs programming interface can be read online at:

http://gc3pie.googlecode.com/svn/branches/2.0/gc3pie/docs/html/index.html

If you installed GC3Pie manually, or if you installed it using the install.sh script with the --develop
option, you can also access a local copy of the documentation from the sources:

cd $HOME/gc3pie # or wherever the gc3pie virtualenv is installed
cd src/docs
make html

Note that you need the Python package Sphinx in order to build the documentation locally.

Configuration File

Location

All commands in The GC3Apps software and The GC3Utils software read two configuration files at startup:

• system-wide one located at :file:/etc/gc3/gc3pie.conf, and

• a user-private one at :file:~/.gc3/gc3pie.conf.

Both files are optional, but at least one of them must exist.

Both files use the same format. The system-wide one is read first, so that users can override the system-level
configuration in their private file. Configuration data from corresponding sections in the two configuration files is
merged; the value in the user-private file overrides the one from the system-wide configuration.

If you try to start any GC3Utils command without having a configuration file, a sample one will be copied to the
user-private location :file:~/.gc3/gc3pie.conf and an error message will be displayed, directing you to edit
the sample file before retrying.

Configuration file format

The GC3Pie configuration file follows the format understood by Python ConfigParser, which is very close to the
syntax used in MS-Windows .INI files. See http://docs.python.org/library/configparser.html for reference.

The GC3Libs configuration file consists of several configuration blocks. Each configuration block (section) starts
with a keyword in square brackets and contains the configuration options for a specific part.

The following sections are used by the GC3Apps/GC3Utils programs:

• [DEFAULT] – this is for global settings.

• [auth/name] – these are for settings related to identity/authentication (identifying yourself to clusters &
grids).

• [resource/name] – these are for settings related to a specific computing resource (cluster, grid, etc.)

8 Chapter 2. Table of Contents

http://www.macports.org/
http://sourceforge.net/projects/fink/
http://mxcl.github.com/homebrew/
http://mirror.switch.ch/ftp/mirror/gnu/time/
http://gc3pie.googlecode.com/svn/branches/2.0/gc3pie/docs/html/index.html
http://sphinx.pocoo.org/
http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Sections with other names are allowed but will be ignored.

The DEFAULT section

The [DEFAULT] section is optional.

Values defined in the [DEFAULT] section can be used to insert values in other sections, using the %(name)s syn-
tax. See documentation of the Python SafeConfigParser object at http://docs.python.org/library/configparser.html
for an example.

auth sections

There can be more than one [auth] section.

Each authentication section must begin with a line of the form:

[auth/name]

where the name portion is any alphanumeric string.

You can have as many [auth/name] sections as you want; any name is allowed provided it’s composed only of
letters, numbers and the underscore character _.

This allows you to define different auth methods for different resources. Each [resource/name] section will
reference one (and one only) authentication section.

Authentication types Each auth section must specify a type setting.

type defines the authentication type that will be used to access a resource. There are three supported authentica-
tion types:

• ssh; use this for resources that will be accessed by opening an SSH connection to the front-end node of a
cluster.

• voms-proxy: uses voms-proxy-init to generate a proxy; use for resources that require a VOMS-
enabled Grid proxy.

• grid-proxy: uses grid-proxy-init to generate a proxy; use for resources that require a Grid proxy
(but no VOMS extensions).

• ec2: use this for a EC2-compatible cloud resource.

For the ssh-type auth, the following keys must be provided:

• type: must be ssh

• username: must be the username to log in as on the remote machine

The following configuration keys are instead optional:

• port: TCP port number where the SSH server is listening. The default value 22 is fine for almost all cases;
change it only if you know what you are doing.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from (default:
$HOME/ssh/config:file:. The format of the SSH configuration file is documented in the ssh_config(5)
man page.

• timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to be
established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

2.1. User Documentation 9

http://docs.python.org/library/configparser.html
http://docs.python.org/library/configparser.html
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

For the ec2-type auth, the following keys can be provided. If they are not found, the value of the corresponding
environment variable will be used instead, if found, otherwise an error will be raised.

• ec2_access_key: Your personal access key to authenticate against the specific cloud endpoint. If not
found, the environment variable EC2_ACCESS_KEY will be used.

• ec2_secret_key: Your personal secret key associated with the above ec2_access_key. If not
found, the environment variable EC2_SECRET_KEY will be used.

Any other key/value pair will be ignored.

For the voms-proxy type auth, the following keys must be provided:

• type: must be voms-proxy

• vo: the VO to authenticate with (passed directly to voms-proxy-init as argument to the --vo
command-line switch)

• cert_renewal_method: see below.

• remember_password: see below.

Any other key/value pair will be ignored.

For the grid-proxy type auth, the following keys must be provided:

• type: must be grid-proxy

• cert_renewal_method: see below.

• remember_password: see below.

Any other key/value pair will be ignored.

For the voms-proxy and grid-proxy authentication types, the cert_renewal_method setting specifies
whether GC3Libs should attempt to get a certificate if the current one is expired or otherwise invalid. Currently
there are two supported cert_renewal_method types:

• slcs: user certificate is generated through an invocation of the slcs-init:command: program.

• manual: user certificate is generated/renewed though an external process and has to be performed by the
user outside of the scope of GC3Pie. In this case, if the user certificate is expired, invalid or non-existent,
GC3Pie will fail to authenticate.

For the slcs certificate renewal method, the following keys must be provided:

• aai_username: passed directly to slcs-init as argument to the --user command-line switch.

• idp: passed directly to slcs-init as argument to the --idp command-line switch.

For the manual certificate renewal method, no additional keys are required.

The remember_password entry (optional) must be set to a boolean value (the strings 1‘, ‘‘yes, true
and on are interpreted as boolean “true”; any other value counts as “false”). If set to a true value, the
remember_password entry instructs GC3Pie to keep the password used for this authentication in the pro-
gram’s main memory; this implies that you will be asked for the password at most once per program invocation.
This setting is optional, and defaults to “false”. Keeping passwords in memory is bad security practice; do not set
this option to “true” unless you understand the implications.

Example 1. The following example auth section shows how to configure GC3Pie for using SWITCHaai SLCS
services to generate a certificate and a VOMS proxy to access the Swiss National Distributed Computing Infras-
tructure SMSCG:

[auth/smscg]
type = voms-proxy
cert_renewal_method = slcs
aai_username = <aai_user_name> # SWITCHaai/Shibboleth user name
idp= uzh.ch
vo = smscg

10 Chapter 2. Table of Contents

http://www.switch.ch/aai
http://www.switch.ch/grid/slcs/index.html
http://vdt.cs.wisc.edu/components/voms.html
http://www.smscg.ch/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Example 2. The following configuration sections are used to set up two different accounts, that GC3Pie programs
can use. Which account should be used on which computational resource is defined in the resource sections (see
below).

[auth/ssh1]
type = ssh
username = murri # your username here

[auth/ssh2] # I use a different account name on some resources
type = ssh
username = rmurri
read additional options from this SSH config file
ssh_config = ~/.ssh/alt-config

Example 3. The following configuration section is used to access an EC2 resource (access and secret keys are of
course invalid :)):

[auth/hobbes]
type=ec2
ec2_access_key=1234567890qwertyuiopasdfghjklzxc
ec2_secret_key=cxzlkjhgfdsapoiuytrewq0987654321

resource sections

Each resource section must begin with a line of the form:

[resource/name]

You can have as many [resource/name] sections as you want; this allows you to define many different
resources. Each [resource/name] section must reference one (and one only) [auth/name] section (by its
auth key).

Resources currently come in several flavours, distinguished by the value of the type key:

• If type is sge, then the resource is a Grid Engine batch system, to be accessed by an SSH connection to
its front-end node.

• If type is pbs, then the resource is a Torque/PBS batch system, to be accessed by an SSH connection to
its front-end node.

• If type is lsf, then the resource is a LSF batch system, to be accessed by an SSH connection to its
front-end node.

• If type is slurm, then the resource is a SLURM batch system, to be accessed by an SSH connection to
its front-end node.

• If type is shellcmd, then the resource is the computer where the GC3Pie script is running and applica-
tions are executed by just spawning a local UNIX process.

• If type is ec2+shellcmd, then the resource is a cloud with EC2-compatible APIs, and applications are
run on Virtual Machines spawned on the cloud.

All [resource/name] sections (except those of shellcmd type) must reference a valid auth/*** section.
Resources of sge, pbs, lsf and slurm type can only reference :command:ssh type sections.

Some configuration keys are commmon to all resource types:

• type: Resource type, see above.

• auth: the name of a valid [auth/name] section; only the authentication section name (after the /) must
be specified.

• max_cores_per_job: Maximum number of CPU cores that a job can request; a resource will be
dropped during the brokering process if a job requests more cores than this.

• max_memory_per_core: Max amount of memory (expressed in GBs) that a job can request.

2.1. User Documentation 11

http://gridengine.org/blog/2011/11/23/what-now/
http://www.adaptivecomputing.com/products/open-source/torque/
http://www-03.ibm.com/systems/technicalcomputing/platformcomputing/products/lsf/index.html
https://computing.llnl.gov/linux/slurm/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• max_walltime: Maximum job running time (in hours).

• max_cores: Total number of cores provided by the resource.

• architecture: Processor architecture. Should be one of the strings x86_64 (for 64-bit Intel/AMD/VIA
processors), i686 (for 32-bit Intel/AMD/VIA x86 processors), or x86_64,i686 if both architectures are
available on the resource.

• time_cmd: Used only when type is shellcmd. The time program is used as wrapper for the application
in order to collect informations about the execution when running without a real LRMS.

• prologue: Used only when type is pbs, lsf, slurm or sge. The content of the prologue script will
be inserted into the submission script and it’s executed before the real application. It is intended to ex-
ecute some shell commands needed to setup the execution environment before running the application
(e.g. running a module load ... command). The script must be a valid, plain /bin/sh script.

• <application_name>_prologue: Same as prologue, but it is used only when
<application_name> matches the name of the application. Valid application names are:
zods, gamess, turbomole, codeml, rosetta, rosetta_docking, geotop. If both prologue and
<application_name>_prologue options are defined, the content of both files is included in
the submission script (first prologue, then <application_name>_prologue).

• prologue_content: Used only when type is pbs, lsf, slurm or sge. A (possibly multi-line)
string that will be inserted into the submission script and executed before the real application. Its
value will be inserted after any other prologue, <application_name>_prologue option, if
present.

• <application_name>_prologue_content: Same as prologue_content, but it is used only
when <application_name> matches the name of the application. Valid application names are: zods,
gamess, turbomole, codeml, rosetta, rosetta_docking, geotop. Its value will be inserted after any other
prologue, <application_name>_prologue, prologue_content option, if present.

• epilogue: Used only when type is pbs, lsf, slurm or sge. The content of the epilogue script will
be inserted into the submission script and it’s executed after the real application. The script must be a
valid, plain /bin/sh script.

• <application_name>_epilogue: Same as epilogue, but it is used only when
<application_name> matches the name of the application. Valid application names are:
zods, gamess, turbomole, codeml, rosetta, rosetta_docking, geotop. If both epilogue and
<application_name>_epilogue options are defined, the content of both files is included in
the submission script (first epilogue, then <application_name>_epilogue).

• epilogue_content: Used only when type is pbs, lsf, slurm or sge. A (possibly multi-line)
string that will be inserted into the submission script and executed after the real application. Its
value will be inserted after any other epilogue, <application_name>_epilogue option, if
present.

• <application_name>_epilogue_content: Same as epilogue_content, but it is used only
when <application_name> matches the name of the application. Valid application names are: zods,
gamess, turbomole, codeml, rosetta, rosetta_docking, geotop. Its value will be inserted after any other
epilogue, <application_name>_epilogue, epilogue_content option, if present.

sge resources The following configuration keys are required in a sge-type resource section:

• frontend: should contain the FQDN (Fully-qualified domain name) of the SGE front-end node. An SSH
connection will be attempted to this node, in order to submit jobs and retrieve status info.

• transport: Possible values are: ssh or local. If ssh, we try to connect to the host specified in
frontend via SSH in order to execute SGE commands. If local, the SGE commands are run directly
on the machine where GC3Pie is installed.

To submit parallel jobs to SGE, a “parallel environment” name must be specified. You can specify the PE to
be used with a specific application using a configuration parameter application name + _pe (e.g., gamess_pe,
zods_pe); the default_pe parameter dictates the parallel environment to use if no application-specific one

12 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

is defined. If neither the application-specific, nor the ‘‘default_pe‘‘ parallel environments are defined, then it will
not be possible to submit parallel jobs.

When a job has finished, the SGE batch system does not (by default) immediately write its information into the
accounting database. This creates a time window during which no information is reported about the job by SGE,
as if it never existed. In order not to mistake this for a “job lost” error, GC3Libs allow a “grace time”: qacct job
information lookups are allowed to fail for a certain time span after the first time qstat failed. The duration of
this time span is set with the sge_accounting_delay parameter, whose default is 15 seconds (matches the
default in SGE, as of release 6.2):

• sge_accounting_delay: Time (in seconds) a failure in qacct will not be considered critical.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands
are searched using the PATH environment variable, but you can specify the full path of these commands and/or
add some extra options. The following options are used by the SGE backend:

• qsub: submit a job.

• qacct: get info on resources used by a job.

• qdel: cancel a job.

• qstat: get the status of a job or the status of available resources.

If transport is ssh, then the following options are also read and take precedence above the corresponding
options set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the
SSH configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to
be established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

pbs resources The following configuration keys are required in a pbs-type resource section:

• transport: Possible values are: ssh or local. If ssh, we try to connect to the host specified in
frontend via SSH in order to execute Troque/PBS commands. If local, the Torque/PBS commands are
run directly on the machine where GC3Pie is installed.

• frontend: should contain the FQDN of the Torque/PBS front-end node. This configuration item is only
relevant if transport is local. An SSH connection will be attempted to this node, in order to submit
jobs and retrieve status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands
are searched using the PATH environment variable, but you can specify the full path of these commands and/or
add some extra options. The following options are used by the PBS backend:

• queue: the name of the queue to which jobs are submitted. If empty (the default), no job will be specified
during submission.

• qsub: submit a job.

• qdel: cancel a job.

• qstat: get the status of a job or the status of available resources.

• tracejob: get info on resources used by a job.

If transport is ssh, then the following options are also read and take precedence above the corresponding
options set in the “auth” section:

2.1. User Documentation 13

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the
SSH configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to
be established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

lsf resources The following configuration keys are required in a lsf-type resource section:

• transport: Possible values are: ssh or local. If ssh, we try to connect to the host specified in
frontend via SSH in order to execute LSF commands. If local, the LSF commands are run directly on
the machine where GC3Pie is installed.

• frontend: should contain the FQDN of the LSF front-end node. This configuration item is only relevant
if transport is local. An SSH connection will be attempted to this node, in order to submit jobs and
retrieve status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands
are searched using the PATH environment variable, but you can specify the full path of these commands and/or
add some extra options. The following options are used by the LSF backend:

• bsub: submit a job.

• bjobs: get the status and resource usage of a job.

• bkill: cancel a job.

• lshosts: get info on available resources.

LSF commands use a weird formatting: lines longer than 79 characters are wrapped around, and the continuation
line starts with a long run of spaces. The length of this run of whitespace seems to vary with LSF version; GC3Pie
is normally able to auto-detect it, but there can be a few unlikely cases where it cannot. If this ever happens, the
following configuration option is here to help:

• lsf_continuation_line_prefix_length: length (in characters) of the whitespace prefix of con-
tinuation lines in bjobs output. This setting is normally not needed.

If transport is ssh, then the following options are also read and take precedence above the corresponding
options set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the
SSH configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to
be established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

slurm resources The following configuration keys are required in a slurm-type resource section:

• transport: Possible values are: ssh or local. If ssh, we try to connect to the host specified in
frontend via SSH in order to execute SLURM commands. If local, the SLURM commands are run
directly on the machine where GC3Pie is installed.

14 Chapter 2. Table of Contents

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• frontend: should contain the FQDN of the SLURM front-end node. This configuration item is only
relevant if transport is local. An SSH connection will be attempted to this node, in order to submit
jobs and retrieve status info.

GC3Pie uses standard command line utilities to interact with the resource manager. By default these commands
are searched using the PATH environment variable, but you can specify the full path of these commands and/or
add some extra options. The following options are used by the SLURM backend:

• sbatch: submit a job.

• scancel: cancel a job.

• squeue: get the status of a job or of the available resources.

• sacct: get info on resources used by a job.

If transport is ssh, then the following options are also read and take precedence above the corresponding
options set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the
SSH configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to
be established.

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

shellcmd resources The following optional configuration keys are available in a shellcmd-type resource
section:

• transport: Like any other resources, possible values are ssh or local. Default value is local.

• frontend: If transport is ssh, then frontend is the FQDN of the remote machine where the jobs will be
executed.

• time_cmd: ShellcmdLrms needs the GNU implementation of the command time in order to get re-
source usage of the submitted jobs. time_cmd must contains the path to the binary file if this is different
from the standard (/usr/bin/time).

• override: ShellcmdLrms by default will try to gather information on the system the resource is
running on, including the number of cores and the available memory. These values may be different from
the values stored in the configuration file. If override is True, then the values automatically discovered
will be used. If override is False, the values in the configuration file will be used regardless of the real
values discovered by the resource.

• spooldir: Path to a filesystem location where to create temporary working directories for processes exe-
cuted through this backend. The default value None means to use $TMPDIR or /tmp (see tempfile.mkftemp
for details).

If transport is ssh, then the following options are also read and take precedence above the corresponding
options set in the “auth” section:

• port: TCP port number where the SSH server is listening.

• keyfile: path to the (private) key file to use for SSH public key authentication.

• ssh_config: path to a SSH configuration file, where to read additional options from. The format of the
SSH configuration file is documented in the ssh_config(5) man page.

• ssh_timeout: maximum amount of time (in seconds) that GC3Pie will wait for the SSH connection to
be established.

2.1. User Documentation 15

http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5
http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man5/ssh_config.5?query=ssh_config&sec=5

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Note: We advise you to use the SSH config file for setting port, key file, and connection timeout. Options port,
keyfile, and timeout could be deprecated in future releases.

ec2+shellcmd resource The following configuration options are available for a resource of type
ec2+shellcmd. If these options are omitted, then the default of the boto python library will be used, which at
the time of writing means use the default region on Amazon.

• ec2_url: The URL of the EC2 frontend. On a typical OpenStack installation this will look like:
https://cloud.gc3.uzh.ch:8773/services/Cloud, while for amazon it’s something
like https://ec2.us-east-1.amazonaws.com (this is valid for the zone us-east-1 of
course). If no value is specified, the environment variable EC2_URL will be used, and if not found an
error is raised.

• ec2_region: the region you want to access to. Most OpenStack installations only have one region called
nova.

• keypair_name: the name of the keypair to use when creating a new instance on the cloud. If it’s not
found, a new keypair with this name and the key stored in public_key will be used. Please note that
if the keypair exists already on the cloud but the associated public key is different from the one stored in
public_key, then an error is raised and the resource will not be used.

• public_key: public key to use when creating the keypair. Please note that GC3Pie will assume that
the corresponding private key is stored on a file with the same path but without the .pub extension. This
private key is necessary in order to access the virtual machines created on the cloud. Amazon users: Please
note that Amazon does not accept DSA keys; use RSA keys only for Amazon resources.

• vm_auth: the name of a valid auth stanza used to connect to the virtual machine.

• instance_type: the instance type (aka flavor, aka size) you want to use for your virtual machines by
default.

• <application>_instance_type: you can override the default instance type for a specific applica-
tion by defining an entry in the configuration file for that application. For example:

instance_type=m1.tiny
gc_gps_instance_type=m1.large

will use instance type m1.large for the gc_gps GC3Pie application, and m1.tiny for all the other
applications.

• image_id: the ami-id of the image you want to use. OpenStack users: please note that the ID you will
find on the web interface is not the ami-id. To get the ami-id of an image you have to use the command
euca-describe-images from the euca2ools package.

For Hobbes users: all virtual machines distributed by the GC3 team are in this list of appliances with the
corresponding ami-id.

• <application>_image_id: you can override the default image id for a specific application by defin-
ing an entry in the configuration file for that specific application. For example:

image_id=ami-00000048
gc_gps_image_id=ami-0000002a

will use the image ami-0000002a for gc_gps and image ami-00000048 for all other applications.

• security_group_name: the name of the security group to use. If not found, it will be created using
the rules found in security_group_rules. If the security group is found but some of the rules in
security_group_rules are not present, they will be added to the security groups. Please note that
if the security group defines some rule which is not listed in security_group_rules it will not be
removed from the security group.

• security_group_rules: comma separated list of security rules the security_group must have.
Each rule is in the form:

16 Chapter 2. Table of Contents

https://github.com/boto/boto
http://www.gc3.uzh.ch/infrastructure/hobbes
http://www.gc3.uzh.ch/infrastructure/hobbes/appliances

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

PROTOCOL:PORT_RANGE_START:PORT_RANGE_END:IP_NETWORK

where:

– PROTOCOL can be one of tcp, udp, icmp

– PORT_RANGE_START and PORT_RANGE_END are integers and define the range of ports to allow.
If PROTOCOL is icmp please use -1 for both values since in icmp there is no concept of port.

– IP_NETWORK is a range of IP to allow in the form A.B.C.D/N.

For instance, to allow access to the virtual machine from any machine in the internet you can use:

tcp:22:22:0.0.0.0/0

Please note that in order to be able to access the created virtual machines GC3Pie needs to be able to connect
via ssh, so the above rule is probably necessary in any gc3pie configuration. (of course, you can allow only
your IP address or the IPs of your institution)

• vm_pool_max_size: the maximum number of Virtual Machine GC3Pie will start on this cloud. If 0,
there is no predefined limit to the number of virtual machines GC3Pie will spawn.

• user_data: the content of a script that will run after the startup of the machine. For instance, to automat-
ically upgrade a ubuntu machine after startup you can use:

user_data=#!/bin/bash
aptitude -y update
aptitude -y safe-upgrade

Please note that if you need to span over multiple lines you have to indent the lines after user_data, as
any indented line in a configuration file is interpreted as a continuation of the previous line.

• <application>_user_data: you can override the default userdata for a specific application by defin-
ing an entry in the configuration file for that specific application. For example:

user_data=
warholize_user_data = #!/bin/bash
aptitude update && aptitude -y install imagemagick

will install imagemagick only for the warholize application.

Example resource sections Example 1. This configuration stanza defines a resource to submit jobs to the
Grid Engine cluster whose front-end host is ocikbpra.uzh.ch:

[resource/ocikbpra]
A single SGE cluster, accessed by SSH'ing to the front-end node
type = sge
auth = <auth_name> # pick an ``ssh`` type auth, e.g., "ssh1"
transport = ssh
frontend = ocikbpra.uzh.ch
gamess_location = /share/apps/gamess
max_cores_per_job = 80
max_memory_per_core = 2
max_walltime = 2
ncores = 80

Example 2. This configuration stanza defines a resource to submit jobs on virtual machines that will be automati-
cally started by GC3Pie on Hobbes, the private OpenStack cloud of the University of Zurich:

[resource/hobbes]
enabled=yes
type=ec2+shellcmd
ec2_url=http://hobbes.gc3.uzh.ch:8773/services/Cloud
ec2_region=nova

2.1. User Documentation 17

http://gridengine.org/blog/2011/11/23/what-now/
http://www.gc3.uzh.ch/infrastructure/hobbes

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

auth=ec2hobbes
These values my be overwritten by the remote resource
max_cores_per_job = 8
max_memory_per_core = 2
max_walltime = 8
max_cores = 32
architecture = x86_64

keypair_name=my_name
If keypair does not exists, a new one will be created starting from
`public_key`. Note that if the desired keypair exists, a check is
done on its fingerprint and a warning is issued if it does not match
with the one in `public_key`
public_key=~/.ssh/id_dsa.pub
vm_auth=gc3user_ssh
instance_type=m1.tiny
warholize_instance_type = m1.small
image_id=ami-00000048
warholize_image_id=ami-00000035
security_group_name=gc3pie_ssh
security_group_rules=tcp:22:22:0.0.0.0/0, icmp:-1:-1:0.0.0.0/0
vm_pool_max_size = 8
user_data=
warholize_user_data = #!/bin/bash

aptitude update && aptitude install -u imagemagick

Enabling/disabling selected resources

Any resource can be disabled by adding a line enabled = false to its configuration stanza. Conversely,
a line enabled = true will undo the effect of an enabled = false line (possibly found in a different
configuration file).

This way, resources can be temporarily disabled (e.g., the cluster is down for maintenance) without having to
remove them from the configuration file.

You can selectively disable or enable resources that are defined in the system-wide configuration file. Two main
use cases are supported: the system-wide configuration file :file:/etc/gc3/gc3pie.conf lists and enables all
available resources, and users can turn them off in their private configuration file :file:~/.gc3/gc3pie.conf;
or the system-wide configuration can list all available resources but keep them disabled, and users can enable those
they prefer in the private configuration file.

Environment Variables

The following environmental variables affect GC3Pie operations.

GC3PIE_CONF

Path to an additional configuration file, that is read upon initialization of GC3Pie. If undefined or
empty, no additional configuration file is loaded.

GC3PIE_ID_FILE

Path to the a shared state file, used for recording the “next available” job ID number. By default, it is
located at ~/.gc3/next_id.txt:file:.

GC3PIE_NO_CATCH_ERRORS

Comma-separated list of unexpected/generic error patterns upon which GC3Pie will not act (by de-
fault, ignoring them). Each of these “unignored” errors will be propagated all the way up to top-level.
This facilitates running GC3Pie scripts in a debugger and inspecting the code when some unexpected
error condition happens.

18 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

You can specify which errors to “unignore” by:

• Error class name (e.g., InputFileError). Note that this must be the exact class name of the
error: GC3Pie will not walk the error class hierarchy for matches.

• Function/class/module name: all errors handled in the specified function/class/module will be
propagated to the caller.

• Additional keywords describing the error. Please have a look at the source code for these key-
words.

GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL

If this environmental variable is set to yes or 1, GC3Pie will abort operations immediately if a
configured resource cannot be initialized. The default behavior is instead to ignore initialization
errors and only abort if no resources can be initialized.

The GC3Apps software

GC3Apps is a collection command line front-end to manage submission of a (potentially) large number of com-
putational job to different batch processing systems. For example, the GC3Apps commands ggamess can run
GAMESS jobs on the SMSCG infrastructure and on any computational cluster you can ssh:command: into.

This chapter is a tutorial for the GC3Apps command-line scripts: it explains the common concepts and features,
then goes on to describe the specifics of each command in larger detail.

All GC3Apps scripts share a common set of functionalities, which are derive from a common blueprint, named
a session-based script, described in Section Introduction to session-based scripts below. Script-specific sections
detail the scope and options that are unique to a given script.

If you find a technical term whose meaning is not clear to you, please look it up in the Glossary. (But feel free to
ask on the GC3Pie mailing list if it’s still unclear!)

Introduction to session-based scripts

All GC3Apps scripts derive their core functionality from a common blueprint, named a session-based script.
The purpose of this section is to describe this common functionality; script-specific sections detail the scope
and options that are unique to a given script. Readers interested in Python programming can find the complete
documentation about the session-based script API in the SessionBasedScript section.

The functioning of GC3Apps scripts revolves around a so-called session. A session is just a named collection of
jobs. For instance, you could group into a single session jobs that analyze a set of related files.

Each time it is run, a GC3Apps script performs the following steps:

1. Reads the session directory and loads all stored jobs into memory. If the session directory does not exist,
one will be created with empty contents.

2. Scans the command-line input arguments: if existing jobs do not suffice to analyze the input data, new jobs
are added to the session.

3. The status of all existing jobs is updated, output from finished jobs is collected, and new jobs are submitted.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see
the -l command-line option below.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

Execution can be interrupted at any time by pressing Ctrl+C.

Basic command-line usage and options The exact command-line usage of session-based scripts varies from
one script to the other, so please consult the documentation page for your application. There are quite a number
of common options and behaviors, however, which are described here.

2.1. User Documentation 19

http://www.msg.ameslab.gov/gamess/
http://www.smscg.ch/
mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Continuous execution While single-pass execution of a GC3Apps script is possible (and sometimes used), it is
much more common to keep the script running and let it manage jobs until all are finished. This is accomplished
with the following command-line option:

-C NUM, --continuous NUM Keep running, monitoring jobs and possibly submit-
ting new ones or fetching results every NUM seconds.

When all jobs are finished, a GC3Apps script exits even if the
-C option is given.

Verbose listing of jobs Only a summary of job states is printed by default at the end of step 3., together with
the count of jobs that are in the specified state. Use the -l option (see below) to get a detailed listing of all jobs.

-l STATE, --state STATE Print a table of jobs including their status.

The STATE argument restricts output to jobs in that particular
state. It can be a single state word (e.g., RUNNING) or a comma-
separated list thereof (e.g., NEW,SUBMITTED,RUNNING).

The pseudo-states ok and failed are also allowed for select-
ing jobs in TERMINATED state with exit code (respectively) 0
or nonzero.

If STATE is omitted, no restriction is placed on job states, and a
table of all jobs is printed.

Maximum number of concurrent jobs There is a maximum number of jobs that can be in SUBMITTED or
RUNNING state at a given time. GC3Apps scripts will delay submission of newly-created jobs so that this limit is
never exceeded. The default limit is 50, but it can be changed with the following command-line option:

-J NUM, --max-running NUM Set the maximum NUMber of jobs (default: 50) in
SUBMITTED or RUNNING state.

Location of output files By default, output files are placed in the same directory where the corresponding input
file resides. This can be changed with the following option; it is also possible to specify output locations that vary
depending on certain job features.

-o DIRECTORY, --output DIRECTORY Output files from all jobs will be collected
in the specified DIRECTORY path. If the destination directory
does not exist, it is created.

Job control options These command-line options control the requirements and constraints of new jobs. Indeed,
note that changing the arguments to these options does not change the corresponding requirements on jobs that
already exist in the session.

-c NUM, --cpu-cores NUM Set the number of CPU cores required for each job (de-
fault: 1). NUM must be a whole number.

-m GIGABYTES, --memory-per-core GIGABYTES Set the amount of memory
required per execution core; (Default: 2GB). Specify this as an
integral number followed by a unit, e.g. ‘512MB’ or ‘4GB’.
Valid unit names are: ‘B’, ‘GB’, ‘GiB’, ‘KiB’, ‘MB’, ‘MiB’,
‘PB’, ‘PiB’, ‘TB’, ‘TiB’, ‘kB’.

-r NAME, --resource NAME Submit jobs to a specific resource. NAME is a reource
name or comma-separated list of resource names. Use the com-
mand gservers to list available resources.

-w DURATION, --wall-clock-time DURATION Set the time limit for each job; de-
fault is ‘8 hours’. Jobs exceeding this limit will be stopped and
considered as ‘failed’. The duration can be expressed as a whole

20 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

number followed by a time unit, e.g., ‘3600 s’, ‘60 minutes’, ‘8
hours’, or a combination thereof, e.g., ‘2hours 30minutes’. Valid
unit names are: ‘d’, ‘day’, ‘days’, ‘h’, ‘hour’, ‘hours’, ‘hr’, ‘hrs’,
‘m’, ‘microsec’, ‘microseconds’, ‘min’, ‘mins’, ‘minute’, ‘min-
utes’, ‘ms’, ‘nanosec’, ‘nanoseconds’, ‘ns’, ‘s’, ‘sec’, ‘second’,
‘seconds’, ‘secs’.

Session control options This set of options control the placement and contents of the session.

-s PATH, --session PATH Store the session information in the directory at PATH. (By
default, this is a subdirectory of the current directory, named
after the script you are executing.)

If PATH is an existing directory, it will be used for storing job
information, and an index file (with suffix .csv) will be created
in it. Otherwise, the job information will be stored in a directory
named after PATH with a suffix .jobs appended, and the index
file will be named after PATH with a suffix .csv added.

-N, --new-session Discard any information saved in the session directory (see the
--session option) and start a new session afresh. Any infor-
mation about jobs previously recorded in the session is lost.

-u, --store-url URL Store GC3Pie job information at the persistent storage spec-
ified by URL. The URL can be any form that is understood
by the gc3libs.persistence.make_store() function
(which see for details). A few examples:

• sqlite – the jobs are stored in a SQLite3 database named
jobs.db and contained in the session directory.

• /path/to/a/directory – the jobs are stored in the
given directory, one file per job (this is the default format
used by GC3Pie)

• sqlite:////path/to/a/file.db – the jobs are
stored in the given SQLite3 database file.

• mysql://user,passwd@server/dbname – jobs
are stored in table store of the specified MySQL database.
The DB server and connection credentials (username, pass-
word) are also part of the URL.

If this option is omitted, GC3Pie’s SessionBasedScript defaults
to storing jobs in the subdirectory jobs of the session directory;
each job is saved in a separate file.

Exit code A GC3Apps script exits when all jobs are finished, when some error occurred that prevented the script
from completing, or when a user interrupts it with Ctrl+C

In any case, the exit code of GC3Apps scripts tracks job status (in the following sense). The exitcode is a bitfield;
the 4 least-significant bits are assigned a meaning according to the following table:

Bit Meaning
0 Set if a fatal error occurred: the script could not complete
1 Set if there are jobs in FAILED state
2 Set if there are jobs in RUNNING or SUBMITTED state
3 Set if there are jobs in NEW state

This boils down to the following rules:

• exitcode is 0: all jobs are DONE, no further action will be taken by the script (which exists immediately if
called again on the same session).

2.1. User Documentation 21

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• exitcode is 1: an error interrupted the script execution.

• exitcode is 2: all jobs finished, but some are in FAILED state.

• exitcode > 3: run the script again to make jobs progress.

The ggamess script

GC3Apps provide a script drive execution of multiple gamess jobs each of them with a different input file. It
uses the generic gc3libs.cmdline.SessionBasedScript framework.

The purpose of GAMESS is to execute several concurrent runs of GAMESS each with separate input file. These
runs are performed in parallel using every available GC3Pie parameters.

How to run GAMESS on the Grid SSH to ocikbgtw, then run the command (it’s one single command line,
even if it appears broken in several ones in the mail):

ggamess.py -A ~/beckya-dmulti.changes.tar.gz -R 2011R3-beckya-dmulti -s "a_session_name" "input_files_or_directories"

The parts in double quotes should be replaced with actual content:

a_session_name:

Used for grouping. This is a word of your choosing (e.g., “test1”, “control_group”), used
as a label to tag a group of analyses. Multiple concurrent sessions can exist, and they won’t
interfere one with the other. Again, note that a single session can run many different .inp
files.

input_files_or_directories:

This part consists in the path name of .inp files or a directory containing .inp files. When a
directory is specified, all the .inp files contained in it are submitted as GAMESS jobs.

After running, the program will print a short summary of the session (how many jobs running, how many queued,
how many finished). Each finished job creates one directory (whose name is equal to the name of the input file,
minus the trailing .inp), which contains the .out and .dat files.

For shorter typing, I have defined an alias ggms to expand to the above string ggamess.py -A ...
2011R3-beckya-dmulti, so you could shorten the command to just:

ggms -s "a_session_name" "input_files_or_directories"

For instance, to use ggames.py to analyse a single .inp file you must run:

ggms -s "single" dmulti/inp/neutral/dmulti_cc4l.inp

while to use ggamess.py to run several GAMESS jobs in parallel:

ggms -s "multiple" dmulti/inp/neutral

Tweaking execution Command-line options (those that start with a dash character ‘-‘) can be used to alter the
behavior of the ggamess.py command:

-A filename.changes.tar.gz

This selects the file containing your customized version of GAMESS in a format suitable
for running in a virtual machine on the Grid. This file should be created following the
procedure detailed below.

-R version

Select a specific version of GAMESS. This should have been installed in the virtual
machine within a directory named gamess-version; for example, your modified

22 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

GAMESS is saved in directory gamess-2011R3-beckya-dmulti so the “version”
string is 2011R3-beckya-dmulti.

If you omit the -R “version” part, you get the default GAMESS which is presently 2011R1.

-s session

Group jobs in a named session; see above.

-w NUM

Request a running time of at NUM hours. If you omit this part, the default is 8 hours.

-m NUM

Request NUM Gigabytes of memory for running each job. GAMESS’ memory is mea-
sured in words, and each word is 8 bytes; add 1 GB to the total to be safe :-)

Updating the GAMESS code For this you will need to launch the AppPot virtual machine, which is done by
running the following command at the command prompt on ocikbgtw:

apppot-start.sh

After a few seconds, you should find yourself at the same user@rootstrap prompt that you get on your
VirtualBox instance, so you can use the same commands etc.

The only difference of note is that you can exchange files between the AppPot virtual machine and ocikbgtw via
the job directory (whereas it’s /scratch in VirtualBox). So: files you copy into job in the AppPot VM will
appear into your home directory on ocikbgtw, and conversely files from your home directory on ocikbgtw can be
read/written as if they were into directory job in the AppPot VM.

Once you have compiled a new version of GAMESS that you wish to test, you need to run this command (at the
user@rootstrap command prompt in the AppPot VM):

sudo apppot-snap changes ~/job/beckya-dmulti.changes.tar.gz

This will overwrite the file beckya-dmulti.changes.tar.gzwith the new GAMESS version. If you don’t
want to overwrite it and instead create another one, just change the filename above (but it has to end with the string
.changes.tar.gz), and the use the new name for the -R option to ggamess.py

Exit the AppPot VM by typing exit at the command prompt.

The ggeotop script

GC3Apps provide a script drive execution of multiple GEOtop jobs. It uses the generic
gc3libs.cmdline.SessionBasedScript framework.

From GEOtop’s “read me” file:

#
RUNNING
Run this simulation by calling the executable (GEOtop_1.223_static)
and giving the simulation directory as an argument.
#
EXAMPLE
ls2:/group/geotop/sim/tmp/000001>./GEOtop_1.223_static ./
#
TERMINATION OF SIMULATION BY GEOTOP
When GEOtop terminates due to an internal error, it mostly reports this
by writing a corresponding file (_FAILED_RUN or _FAILED_RUN.old) in the
simulation directory. When is terminates sucessfully this file is
named (_SUCCESSFUL_RUN or _SUCCESSFUL_RUN.old).
#
RESTARTING SIMULATIONS THAT WERE TERMINATED BY THE SERVER
When a simulation is started again with the same arguments as described

2.1. User Documentation 23

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

above (RUNNING), then it continues from the last saving point. If
GEOtop finds a file indicating a successful/failed run, it terminates.

Introduction ggeotop driver script acan the specified INPUT directories recursively for simulation directories
and submit a job for each one found; job progress is monitored and, when a job is done, its output files are retrieved
back into the simulation directory itself.

A simulation directory is defined as a directory containing a geotop.inpts file, an in and an out folders.

The ggeotop command keeps a record of jobs (submitted, executed and pending) in a session file (set name with
the -s option); at each invocation of the command, the status of all recorded jobs is updated, output from finished
jobs is collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input
files are added to the command line.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; ggeotop
will delay submission of newly-created jobs so that this limit is never exceeded.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; ggeotop
will delay submission of newly-created jobs so that this limit is never exceeded.

In more detail, ggeotop does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs
into memory. If the session directory does not exist, one will be created with empty contents.

2. Recursively scans trough input folder searching for any valid folder.

ggeotop will generate a collection of jobs one for each valid input folder. Each job will transfer the
input folder to the remote execution node and run GEOTop. GEOTop reads geotop.inpts files for getting
instructions on how to find the input data, what and how to process and where to place generated output
results. Extracted from a generic geotop.inpts file:

DemFile = "in/dem"
MeteoFile = "in/meteo"
SkyViewFactorMapFile = "in/svf"
SlopeMapFile = "in/slp"
AspectMapFile = "in/asp"

!==
! DIST OUTPUT
!==
SoilAveragedTempTensorFile = "out/maps/T"
NetShortwaveRadiationMapFile="out/maps/SWnet"
InShortwaveRadiationMapFile="out/maps/SWin"
InLongwaveRadiationMapFile="out/maps/LWin"
SWEMapFile= "out/maps/SWE"
AirTempMapFile = "out/maps/Ta"

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in
step 2.

4. For each of the terminated jobs, a post-process routine is executed to check and validate the consistency
of the generated output. If no _SUCCESSFUL_RUN or _FAILED_RUN file is found, the related job will
be resubmitted together with the current input and output folders. GEOTop is capable of restarting an
interrupted claculation by inspecting the intermediate results generated in out folder.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see
the -l command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program ggeotop exits when all jobs have run to completion, i.e., when all valid input folders have
been computed.

24 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be
resumed at a later stage by calling ggeotop with exactly the same command-line options.

Command-line invocation of ggeotop The ggeotop script is based on GC3Pie’s session-based script
model; please read also the Introduction to session-based scripts section for an introduction to sessions and generic
command-line options.

A ggeotop command-line is constructed as follows:

1. Each argument (at least one should be specified) is considered as a folder reference.

2. -x option is used to specify the path to the GEOtop executable file.

Example 1. The following command-line invocation uses ggeotop to run GEOTop on all valid input folder
found in the recursive check of input_folder:

$ ggeotop -x /apps/geotop/bin/geotop_1_224_20120227_static ./input_folder

Example 2.

$ ggeotop --session SAMPLE_SESSION -w 24 -x /apps/geotop/bin/geotop_1_224_20120227_static ./input_folder

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of the
--session option in Introduction to session-based scripts). The command above creates the jobs, submits
them, and finally prints the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/50 (0.0%)
SUBMITTED 50/50 (100.0%)
TERMINATED 0/50 (0.0%)
TERMINATING 0/50 (0.0%)
total 50/50 (100.0%)

Calling ggeotop over and over again will result in the same jobs being monitored;

The -C option tells ggeotop to continue running until all jobs have finished running and the output files have
been correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/540 (0.0%)
SUBMITTED 0/50 (0.0%)
TERMINATED 50/50 (100.0%)
TERMINATING 0/50 (0.0%)
ok 50/50 (100.0%)
total 50/50 (100.0%)

Each job will be named after the folder name (e.g. 000002) (you could see this by passing the -l option to
ggeotop).; each of these jobs will fill the related input folder with the produced outputs.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Output files for ggeotop Upon successful completion, the output directory of each ggeotop job contains:

• the out folder will contains what has been produced during the computation of the related job.

Example usage This section contains commented example sessions with ggeotop.

2.1. User Documentation 25

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Manage a set of jobs from start to end In typical operation, one calls ggeotop with the -C option and lets it
manage a set of jobs until completion.

So, to analyse all valid folders under input_folder, submitting 200 jobs simultaneously each of them request-
ing 2GB of memory and 8 hours of wall-clock time, one can use the following command-line invocation:

$ ggeotop -s example -C 120 -x
/apps/geotop/bin/geotop_1_224_20120227_static -w 8 input_folder

The -s example option tells ggeotop to store information about the computational jobs in the
example.jobs directory.

The -C 120 option tells ggeotop to update job state every 120 seconds; output from finished jobs is retrieved
and new jobs are submitted at the same interval.

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested parameter range has been
computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Using GC3Pie utilities GC3Pie comes with a set of generic utilities that could be used as a complemet to the
ggeotop command to better manage a entire session execution.

gkill: cancel a running job To cancel a running job, you can use the command gkill. For instance, to
cancel job.16, you would type the following command into the terminal:

gkill job.16

or:

gkill -s example job.16

gkill could also be used to cancel jobs in a given state

gkill -s example -l UNKNOWN

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

ginfo: accessing low-level details of a job It is sometimes necessary, for debugging purposes, to print out
all the details about a job; the ginfo command does just that: prints all the details that GC3Utils know about a
single job.

For instance, to print out detailed information about job.13 in session example, you would type

ginfo -s example job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running,
and when it was started:

26 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

$ ginfo -s example job.13
job.13

cores: 2
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:05 2012
Submitted to 'wsl' at Tue May 15 09:52:05 2012
RUNNING at Tue May 15 10:07:39 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/116613370683251353308673
lrms_jobname: GC3Pie_00002
original_exitcode: -1
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069259.18
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

RUNNING: 1337069259.18
SUBMITTED: 1337068325.26

unknown_iteration: 0
used_cputime: 1380
used_memory: 3382706

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -c -s example job.13
job.13

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/geotop/results/00002
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/geotop/results/00002'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: GC3Pie_00002
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information

2.1. User Documentation 27

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

$ ginfo -c -s example job.13
job.13

arguments: 00002
changed: False
environment:
executable: geotop_static
executables: geotop_static
execution:

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/geotop/results/00002
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/geotop/results/00002'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: GC3Pie_00002
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: ggeotop.log
stdout_filename: ggeotop.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

jobname: GC3Pie_00002
join: True
output_base_url: None
output_dir: /data/geotop/results/00002
outputs:

@output.list: file, , @output.list, None, None, None, None
ggeotop.log: file, , ggeotop.log, None, None, None, None

persistent_id: job.1698503
requested_architecture: x86_64
requested_cores: 2
requested_memory: 4
requested_walltime: 4
stderr: None
stdin: None
stdout: ggeotop.log
tags: APPS/EARTH/GEOTOP

The grosetta and gdocking scripts

GC3Apps provide two scripts to drive execution of applications (protocols, in Rosetta terminology) from the
Rosetta bioinformatics suite.

The purpose of grosetta and gdocking is to execute several concurrent runs of minirosetta or dock-
ing_protocol on a set of input files, and collect the generated output. These runs are performed in parallel using

28 Chapter 2. Table of Contents

http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

every available GC3Pie resource; you can of course control how many runs should be executed and select what
output files you want from each one.

The script grosetta is a relatively generic front-end that executes the minirosetta program by default (but a
different application can be chosen with the -x command-line option). The gdocking script is specialized for
running Rosetta‘s docking_protocol program.

Introduction The grosetta and gdocking execute several runs of minirosetta or docking_protocol on a
set of input files, and collect the generated output. These runs are performed in parallel, up to a limit that can be
configured with the -J command-line option. You can of course control how many runs should be executed and
select what output files you want from each one.

Note: The grosetta and gdocking scripts are very similar in usage. In the following, whatever is written
about grosetta applies to gdocking as well; the differences will be pointed out on a case-by-case basis.

In more detail, grosetta does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs
into memory. If the session directory does not exist, one will be created with empty contents.

2. Scans the input file names given on the command-line, and generates a number of identical computational
jobs, all running the same Rosetta program on the same set of input files. The objective is to compute a
specified number P of decoys of any given PDB file.

The number P of wanted decoys can be set with the --total-decoys option (see below). The option
--decoys-per-job can set the number of decoys that each computational job can compute; this should
be a guessed based on the maximum allowed run time of each job and the time taken by the Rosetta protocol
to compute a single decoy.

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in
step 2.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see
the -l command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program grosetta exits when all jobs have run to completion, i.e., when the wanted number of
decoys have been computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can
be resumed at a later stage by calling grosetta with exactly the same command-line options.

The gdocking program works in exactly the same way, with the important exception that gdocking uses a
separate Rosetta docking_protocol program invocation per input file.

Command-line invocation of grosetta The grosetta script is based on GC3Pie’s session-based script
model; please read also the Introduction to session-based scripts section for an introduction to sessions and generic
command-line options.

A grosetta command-line is constructed as follows:

1. The 1st argument is the flags file, containing options to pass to every executed Rosetta program;

2. then follows any number of input files (copied from your PC to the execution site);

3. then a literal colon character :;

4. finally, you can list any number of output file patterns (copied back from the execution site to your PC);
wildcards (e.g., *.pdb) are allowed, but you must enclose them in quotes. Note that:

• you can omit the output files: the default is "*.pdb" "*.sc" "*.fasc"

• if you omit the output files patterns, omit the colon as well

2.1. User Documentation 29

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/d0/de4/docking_protocol.html
http://www.rosettacommons.org/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Example 1. The following command-line invocation uses grosetta to run minirosetta on the
molecule files 1bjpA.pdb, 1ca7A.pdb, and 1cgqA.pdb. The flags file (1st command-line
argument) is a text file containing options to pass to the actual minirosetta program. Additional input
files are specified on the command line between the flags file and the PDB input files.

$ grosetta flags alignment.filt query.fasta query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb 1cgqA.pdb

You can see that the listing of output patterns has been omitted,
so `grosetta`:command: will use the default and retrieve all
`*.pdb`:file:, `*.sc`:file: and `*.fasc`:file: files.

There will be a number of identical jobs being executed as a result of a grosetta or gdocking invocation;
this number depends on the ratio of the values given to options -P and -p:

-P NUM, --total-decoys NUM Compute NUM decoys per input file.

-p NUM, --decoys-per-job NUM Compute NUM decoys in a single job (default: 1).
This parameter should be tuned so that the running time of a
single job does not exceed the maximum wall-clock time (see the
--wall-clock-time command-line option in Introduction
to session-based scripts).

If you omit -P and -p, they both default to 1, i.e., one job will be created (as in the example 1. above).

Example 2. The following command-line invocation will run 3 parallel instances of minirosetta,
each of which generates 2 decoys (save the last one, which only generates 1 decoy) of the molecule
described in file 1bjpA.pdb:

$ grosetta --session SAMPLE_SESSION --total-decoys 5 --decoys-per-job 2 flags alignment.filt query.fasta query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb

In this example, job information is stored into session SAMPLE_SESSION (see the documentation
of the --session option in Introduction to session-based scripts). The command above creates the
jobs, submits them, and finally prints the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/3 (0.0%)

RUNNING 0/3 (0.0%)
STOPPED 0/3 (0.0%)

SUBMITTED 3/3 (100.0%)
TERMINATED 0/3 (0.0%)
TERMINATING 0/3 (0.0%)

total 3/3 (100.0%)

Note that the status report counts the number of jobs in the session, not the total number of decoys
being generated. (Feel free to report this as a bug.)

Calling grosetta over and over again will result in the same jobs being monitored; to create new jobs, change
the command line and raise the value for -P or -p. (To completely erase an existing session and start over, use
the --new-session option, as per session-based script documentation.)

The -C option tells grosetta to continue running until all jobs have finished running and the output files have
been correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/3 (0.0%)

RUNNING 0/3 (0.0%)
STOPPED 0/3 (0.0%)

SUBMITTED 0/3 (0.0%)
TERMINATED 3/3 (100.0%)

TERMINATING 0/3 (0.0%)
ok 3/3 (100.0%)

total 3/3 (100.0%)

The three jobs are named 0--1, 2--3 and 4--5 (you could see this by passing the -l option to grosetta);
each of these jobs will create an output directory named after the job.

30 Chapter 2. Table of Contents

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

In general, grosetta jobs are named N--M with N and M being two integers from 0 up to the value specified
with option --total-decoys. Jobs generated by gdocking are instead named after the input file, with a
.N--M suffix added.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

Note: The naming and contents of output files differ between grosetta and gdocking. Refer to the appro-
priate section below!

Output files for grosetta Upon successful completion, the output directory of each grosetta job contains:

• A copy of the input PDB files;

• Additional .pdb files named S_random string.pdb, generated by minirosetta during its run;

• A file score.sc;

• Files minirosetta.static.log, minirosetta.static.stdout.txt and
minirosetta.static.stderr.txt.

The minirosetta.static.log file contains the output log of the minirosetta execution. For each of the
S_*.pdb files above, a line like the following should be present in the log file (the file name and number of
elapsed seconds will of course vary!):

protocols.jd2.JobDistributor: S_1CA7A_1_0001 reported success in 124 seconds

The minirosetta.static.stdout.txt contains a copy of the minirosetta output log, plus the output of
the wrapper script. In case of successful minirosetta run, the last line of this file will read:

minirosetta.static: All done, exitcode: 0

Output files for gdocking Execution of gdocking yields the following output:

• For each .pdb input file, a .decoys.tar file (e.g., for 1bjpa.pdb input, a 1bjpa.decoys.tar
output is produced), which contains the .pdb files of the decoys produced by gdocking.

• For each successful job, a .N–M directory: e.g., for the 1bjpa.1--2 job, a 1bjpa.1--2/ directory is
created, with the following content:

– docking_protocol.log: output of Rosetta’s docking_protocol program;

– docking_protocol.stderr.txt, docking_protocol.stdout.txt: obvoius meaning.
The “stdout” file contains a copy of the docking_protocol.log contents, plus the output from
the wrapper script.

– docking_protocol.tar.gz: the .pdb decoy files produced by the job.

The following scheme summarizes the location of gdocking output files:

(directory where gdocking is run)/
|
+- file1.pdb Original input file
|
+- file1.N--M/ Directory collecting job outputs from job file1.N--M
| |
| +- docking_protocol.tar.gz
| +- docking_protocol.log
| +- docking_protocol.stderr.txt
| ... etc
|
+- file1.N--M.fasc FASC file for decoys N to M [1]
|
+- file1.decoys.tar tar archive of PDB file of all decoys
| generated corresponding to 'file1.pdb' [2]

2.1. User Documentation 31

http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html
http://www.rosettacommons.org/manuals/archive/rosetta3.4_user_guide/de/daa/boinc_minirosetta_usage.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

|
...

Let P be the total number of decoys (the argument to the -P option), and p be the number of decoys per job
(argument to the -p option). Then you would get in a single directory:

1. (P/p) different .fasc files, corresponding to the (P/p) jobs;

2. P different .pdb files, named a_file.0.pdb to a_file.(P-1).pdb

Example usage This section contains commented example sessions with grosetta. All the files used in this
example are available in the GC3Pie Rosetta test directory (courtesy of Lars Malmstroem).

Manage a set of jobs from start to end In typical operation, one calls grosetta with the -C option and lets
it manage a set of jobs until completion.

So, to generate one decoy from a set of given input files, one can use the following command-line invocation:

$ grosetta -s example -C 120 -P 1 -p 1 \
flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb \
3c6vA.pdb

The -s example option tells grosetta to store information about the computational jobs in the
example.jobs directory.

The -C 120 option tells grosetta to update job state every 120 seconds; output from finished jobs is retrieved
and new jobs are submitted at the same interval.

The -P 1 and -p 1 options set the total number of decoys to compute and the maximum number of decoys that
a single computational job can handle. These values can be arbitrarily high (however the p value should be such
that the computational job can actually compute that many decoys in the allotted wall-clock time).

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested number of decoys (set by
the -P option) has been computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Managing a session by repeated grosetta invocation We now show how one can obtain the same result by
calling grosetta multiple times (there could be hours of interruption between one invocation and the next one).

Note: This is not the typical mode of operating with grosetta, but may still be useful in certain settings.

1. Create a session (1 job only, since no -P option is given); the session name is chosen with the -s (short for
--session) option. You should take care of re-using the same session name with subsequent commands.

$ grosetta -s example flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb

32 Chapter 2. Table of Contents

http://code.google.com/p/gc3pie/source/browse/#svn%2Ftrunk%2Fgc3pie%2Fgc3apps%2Frosetta%2Ftest
http://www.imsb.ethz.ch/researchgroup/malars

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

2. Now we call grosetta again, and request that 3 decoys be computed starting from a single PDB file
(--total-decoys 3 on the command line). Since we are submitting a single PDB file, the 3 decoys
will be computed all in a single run, so the --decoys-per-job option will have value 3.

$ grosetta -s example --total-decoys 3 --decoys-per-job 3 \
flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 3c6vA.pdb

Status of jobs in the 'example.csv' session:
SUBMITTED 3/3 (100.0%)

Note that 3 jobs were submitted: grosetta interprets the --total-decoys option globally, and adds
one job to compute the 2 missing decoys from the file set from step 1. (This is currently a limitation of
grosetta)

From here on, one could simply run grosetta -C 120 and let it manage the session until completion
of all jobs, as in the example Manage a set of jobs from start to end above. For the sake of showing how
the use of several command-line options of grosetta, we shall further show how manage the session by
repeated separate invocations.

3. Next step is to monitor the session, so we add the command-line option -l which tells grosetta to list
all the jobs with their status. Also note that we keep the -s example option to tell grosetta that we
would like to operate on the session named example.

All non-option arguments can be omitted: as long as the total number of decoys is unchanged, they’re not
needed.

$ grosetta -s example -l
Decoys Nr. State (JobID) Info
==
0--1 RUNNING (job.766) Running at Mon Dec 20 19:32:08 2010
2--3 RUNNING (job.767) Running at Mon Dec 20 19:33:23 2010
0--2 RUNNING (job.768) Running at Mon Dec 20 19:33:43 2010

Without the -l option only a summary of job statuses is presented:

$ grosetta -s example
Status of jobs in the 'grosetta.csv' session:
RUNNING 3/3 (100.0%)

Alternatively, we can keep the command line arguments used in the previous invocation: they will be ignored
since they do not add any new job (the number of decoys to compute is always 1):

$ grosetta -s example -l flags alignment.filt query.fasta \
query.psipred_ss2 boinc_aaquery03_05.200_v1_3.gz \
boinc_aaquery09_05.200_v1_3.gz 1bjpA.pdb 1ca7A.pdb \
2fltA.pdb 2fm7A.pdb 2op8A.pdb 2ormA.pdb 2os5A.pdb \
3c6vA.pdb

Decoys Nr. State (JobID) Info
==
0--1 RUNNING (job.766)
2--3 RUNNING (job.767) Running at Mon Dec 20 19:33:23 2010
0--2 RUNNING (job.768) Running at Mon Dec 20 19:33:43 2010

Note that the -l option is available also in combination with the -C option (see Manage a set of jobs from
start to end).

4. Calling grosetta again when jobs are done triggers automated download of the results:

$../grosetta.py
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/minirosetta.static.stdout.txt

2.1. User Documentation 33

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/minirosetta.static.log
...
File downloaded:
gsiftp://idgc3grid01.uzh.ch:2811/jobs/214661292869757468202765/.arc/input
Status of jobs in the 'grosetta.csv' session:
TERMINATED 1/1 (100.0%)
ok 1/1 (100.0%)

The -l option comes handy to see what directory contains the job output:

$ grosetta -l
Decoys Nr. State (JobID) Info
==
0--1 TERMINATED (job.766) Output retrieved into directory '/tmp/0--1'

The gcrypto script

GC3Apps provide a script drive execution of multiple gnfs-cmd jobs each of them with a different param-
eter set. Allotogehter they form a single crypto simulation of a large parameter space. It uses the generic
gc3libs.cmdline.SessionBasedScript framework.

The purpose of gcrypto is to execute several concurrent runs of gnfs-cmd on a parameter set. These runs are
performed in parallel using every available GC3Pie resource; you can of course control how many runs should be
executed and select what output files you want from each one.

Introduction Like in a for-loop, the gcrypto driver script takes as input three mandatory arguments:

1. RANGE_START: initial value of the range (e.g., 800000000)

2. RANGE_END: final value of the range (e.g., 1200000000)

3. SLICE: extent of the range that will be examined by a single job (e.g., 1000)

For example:

gcrypto 800000000 1200000000 1000

will produce 400000 jobs; the first job will perform calculations on the range 800000000 to 800000000+1000, the
2nd one will do the range 800001000 to 800002000, and so on.

Inputfile archive location (e.g. lfc://lfc.smscg.ch/crypto/lacal/input.tgz) can be specified with the ‘-i’ option. Oth-
erwise a default filename ‘input.tgz’ will be searched in current directory.

Job progress is monitored and, when a job is done, output is retrieved back to submitting host in folders named:
RANGE_START + (SLICE * ACTUAL_STEP) Where ACTUAL_STEP correspond to the position of the job
in the overall execution.

The gcrypto command keeps a record of jobs (submitted, executed and pending) in a session file (set name with
the ‘-s’ option); at each invocation of the command, the status of all recorded jobs is updated, output from finished
jobs is collected, and a summary table of all known jobs is printed. New jobs are added to the session if new input
files are added to the command line.

Options can specify a maximum number of jobs that should be in ‘SUBMITTED’ or ‘RUNNING’ state; gcrypto
will delay submission of newly-created jobs so that this limit is never exceeded.

The gcrypto execute several runs of gnfs-cmd on a parameter set, and collect the generated output. These
runs are performed in parallel, up to a limit that can be configured with the -J command-line option. You can of
course control how many runs should be executed and select what output files you want from each one.

In more detail, gcrypto does the following:

1. Reads the session (specified on the command line with the --session option) and loads all stored jobs
into memory. If the session directory does not exist, one will be created with empty contents.

34 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

2. Divide the initial parameter range, given in the command-line, into chunks taking the -J value as a refer-
ence. So from a coomand line argument like the following:

$ gcrypto 800000000 1200000000 1000 -J 200

gcryptowill generate an initial chunks of 200 jobs starting from the initial range 800000000 incrementing
of 1000. All jobs will run gnfs-cmd on a specific parameter set (e.g. 800000000, 800001000, 800002000,
...). gcrypto will keep constant the number of simulatenous jobs running retrieving those terminated and
submitting new ones untill the whole parameter range has been computed.

3. Updates the state of all existing jobs, collects output from finished jobs, and submits new jobs generated in
step 2.

Finally, a summary table of all known jobs is printed. (To control the amount of printed information, see
the -l command-line option in the Introduction to session-based scripts section.)

4. If the -C command-line option was given (see below), waits the specified amount of seconds, and then goes
back to step 3.

The program gcrypto exits when all jobs have run to completion, i.e., when the whole paramenter range
has been computed.

Execution can be interrupted at any time by pressing Ctrl+C. If the execution has been interrupted, it can be
resumed at a later stage by calling gcrypto with exactly the same command-line options.

gcrypto requires a number of default input files common to every submited job. This list of input files is
automatically fetched by gcrypto from a default storage repository. Those files are:

gnfs-lasieve6
M1019
M1019.st
M1037
M1037.st
M1051
M1051.st
M1067
M1067.st
M1069
M1069.st
M1093
M1093.st
M1109
M1109.st
M1117
M1117.st
M1123
M1123.st
M1147
M1147.st
M1171
M1171.st
M8e_1200
M8e_1500
M8e_200
M8e_2000
M8e_2500
M8e_300
M8e_3000
M8e_400
M8e_4200
M8e_600
M8e_800
tdsievemt

2.1. User Documentation 35

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

When gcrypto has to be executed with a different set of input files, an additional command line argument
--input-files could be used to specify the locatin of a tar.gz archive containing the input files that
gnfs-cmdwill expect. Similarly, when a different version of gnfs-cmd command needs to be used, the command
line argument --gnfs-cmd could be used to specify the location of the gnfs-cmd to be used.

Command-line invocation of gcrypto The gcrypto script is based on GC3Pie’s session-based script
model; please read also the Introduction to session-based scripts section for an introduction to sessions and generic
command-line options.

A gcrypto command-line is constructed as follows: Like a for-loop, the gcrypto driver script takes as input
three mandatory arguments:

1. RANGE_START: initial value of the range (e.g., 800000000)

2. RANGE_END: final value of the range (e.g., 1200000000)

3. SLICE: extent of the range that will be examined by a single job (e.g., 1000)

Example 1. The following command-line invocation uses gcrypto to run gnfs-cmd on the parameter set
ranging from 800000000 to 1200000000 with an increment of 1000.

$ gcrypto 800000000 1200000000 1000

In this case gcrypto will use the default values for determine the chunks size from the default value of the -J
option (default value is 50 simulatenous jobs).

Example 2.

$ gcrypto --session SAMPLE_SESSION -c 4 -w 4 -m 8 800000000 1200000000 1000

In this example, job information is stored into session SAMPLE_SESSION (see the documentation of the
--session option in Introduction to session-based scripts). The command above creates the jobs, submits
them, and finally prints the following status report:

Status of jobs in the 'SAMPLE_SESSION' session: (at 10:53:46, 02/28/12)
NEW 0/50 (0.0%)
RUNNING 0/50 (0.0%)
STOPPED 0/50 (0.0%)
SUBMITTED 50/50 (100.0%)
TERMINATED 0/50 (0.0%)
TERMINATING 0/50 (0.0%)
total 50/50 (100.0%)

Note that the status report counts the number of jobs in the session, not the total number of jobs that would
correspond to the whole parameter range. (Feel free to report this as a bug.)

Calling gcrypto over and over again will result in the same jobs being monitored;

The -C option tells gcrypto to continue running until all jobs have finished running and the output files have
been correctly retrieved. On successful completion, the command given in example 2. above, would print:

Status of jobs in the 'SAMPLE_SESSION' session: (at 11:05:50, 02/28/12)
NEW 0/400k (0.0%)
RUNNING 0/400k (0.0%)
STOPPED 0/400k (0.0%)
SUBMITTED 0/400k (0.0%)
TERMINATED 50/400k (100.0%)
TERMINATING 0/400k (0.0%)
ok 400k/400k (100.0%)
total 400k/400k (100.0%)

Each job will be named after the parameter range it has computed (e.g. 800001000, 800002000, ...) (you could
see this by passing the -l option to gcrypto); each of these jobs will create an output directory named after the
job.

For each job, the set of output files is automatically retrieved and placed in the locations described below.

36 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Output files for gcrypto Upon successful completion, the output directory of each gcrypto job contains:

• a number of .tgz files each of them correspondin to a step within the execution of the gnfs-cmd com-
mand.

• A log file named gcrypto.log containing both the stdout and the stderr of the gnfs-cmd execution.

Note: The number of .tgz files may depend on whether the execution of the gnfs-cmd command has com-
pleted or not (e.g. jobs may be killed by the batch system when exausting requested resources)

Example usage This section contains commented example sessions with gcrypto.

Manage a set of jobs from start to end In typical operation, one calls gcrypto with the -C option and lets it
manage a set of jobs until completion.

So, to compute a whole parameter range from 800000000 to 1200000000 with an increment of 1000, submitting
200 jobs simultaneously each of them requesting 4 computing cores, 8GB of memory and 4 hours of wall-clock
time, one can use the following command-line invocation:

$ gcrypto -s example -C 120 -J 200 -c 4 -w 4 -m 8 800000000 1200000000 1000

The -s example option tells gcrypto to store information about the computational jobs in the
example.jobs directory.

The -C 120 option tells gcrypto to update job state every 120 seconds; output from finished jobs is retrieved
and new jobs are submitted at the same interval.

The above command will start by printing a status report like the following:

Status of jobs in the 'example.csv' session:
SUBMITTED 1/1 (100.0%)

It will continue printing an updated status report every 120 seconds until the requested parameter range has been
computed.

In GC3Pie terminology when a job is finished and its output has been successfully retrieved, the job is marked as
TERMINATED:

Status of jobs in the 'example.csv' session:
TERMINATED 1/1 (100.0%)

Using GC3Pie utilities GC3Pie comes with a set of generic utilities that could be used as a complemet to the
gcrypto command to better manage a entire session execution.

gkill: cancel a running job To cancel a running job, you can use the command gkill. For instance, to
cancel job.16, you would type the following command into the terminal:

gkill job.16

or:

gkill -s example job.16

gkill could also be used to cancel jobs in a given state

gkill -s example -l UNKNOWN

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

2.1. User Documentation 37

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

ginfo: accessing low-level details of a job It is sometimes necessary, for debugging purposes, to print out
all the details about a job; the ginfo command does just that: prints all the details that GC3Utils know about a
single job.

For instance, to print out detailed information about job.13 in session example, you would type

ginfo -s example job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running,
and when it was started:

$ ginfo -s example job.13
job.13

cores: 2
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:05 2012
Submitted to 'wsl' at Tue May 15 09:52:05 2012
RUNNING at Tue May 15 10:07:39 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/116613370683251353308673
lrms_jobname: LACAL_800001000
original_exitcode: -1
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069259.18
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

RUNNING: 1337069259.18
SUBMITTED: 1337068325.26

unknown_iteration: 0
used_cputime: 1380
used_memory: 3382706

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -c -s example job.13
job.13

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/crypto/results/example.out/8000001000
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/crypto/results/example.out/8000001000'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: LACAL_800001000
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

38 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information:

$ ginfo -c -s example job.13
job.13

arguments: 800000800, 100, 2, input.tgz
changed: False
environment:
executable: gnfs-cmd
executables: gnfs-cmd
execution:

_arc0_state_last_checked: 1337069259.18
_exitcode: 0
_signal: None
_state: TERMINATED
cores: 2
download_dir: /data/crypto/results/example.out/8000001000
execution_targets: hera.wsl.ch
log:

SUBMITTED at Tue May 15 09:52:04 2012
Submitted to 'wsl' at Tue May 15 09:52:04 2012
TERMINATING at Tue May 15 10:07:39 2012
Final output downloaded to '/data/crypto/results/example.out/8000001000'
TERMINATED at Tue May 15 10:07:43 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/11441337068324584585032
lrms_jobname: LACAL_800001000
original_exitcode: 0
queue: smscg.q
resource_name: wsl
state_last_changed: 1337069263.13
stderr_filename: gcrypto.log
stdout_filename: gcrypto.log
timestamp:

SUBMITTED: 1337068324.87
TERMINATED: 1337069263.13
TERMINATING: 1337069259.18

unknown_iteration: 0
used_cputime: 360
used_memory: 3366977
used_walltime: 300

inputs:
srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/gnfs-cmd_20120406: gnfs-cmd
srm://dpm.lhep.unibe.ch/dpm/lhep.unibe.ch/home/crypto/lacal_input_files.tgz: input.tgz

jobname: LACAL_800000900
join: True
output_base_url: None
output_dir: /data/crypto/results/example.out/8000001000
outputs:

@output.list: file, , @output.list, None, None, None, None
gcrypto.log: file, , gcrypto.log, None, None, None, None

persistent_id: job.1698503
requested_architecture: x86_64
requested_cores: 2
requested_memory: 4
requested_walltime: 4

2.1. User Documentation 39

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

stderr: None
stdin: None
stdout: gcrypto.log
tags: APPS/CRYPTO/LACAL-1.0

The GC3Utils software

The GC3Utils are lower-level commands, provided to perform common operations on jobs, regardless of their
type or the application they run.

For instance, GC3Utils provide commands to obtain the list and status of computational resources (gservers);
to clear the list of jobs from old and failed ones (gclean); to get detailed information on a submitted job (ginfo,
mainly for debugging purposes).

This chapter is a tutorial for the GC3Utils command-line utilities.

If you find a technical term whose meaning is not clear to you, please look it up in the Glossary. (But feel free to
ask on the GC3Pie mailing list if it’s still unclear!)

Contents

• The GC3Utils software
– gsession: manage sessions
– gstat: monitor the status of submitted jobs
– gtail: peeking at the job output and error report
– gkill: cancel a running job
– gget: retrieve the output of finished jobs
– gclean: remove a completed job from the status list
– gresub: re-submit a failed job
– gservers: list available resources
– ginfo: accessing low-level details of a job
– gselect: select job ids from from a session
– gcloud: manage VMs created by the EC2 backend

gsession: manage sessions

All jobs managed by one of the GC3Pie scripts are grouped into sessions; information related of a session is stored
into a directory. The gsession command allows you to show the jobs related to a specific session, to abort the
session or to completely delete it.

The gsession accept two mandatory arguments: command and session. command must be one of:

list list jobs related to the session.

log show the session history.

abort kill all jobs related to the session.

delete abort the session and delete the session directory from disk.

For instance, if you want to check the status of the main tasks of a session, just run:

$ gsession list SESSION_DIRECTORY
+--------------------------------+---------------------------+-------+---------------------------------+
| JobID | Job name | State | Info |
+--------------------------------+---------------------------+-------+---------------------------------+
| ParallelTaskCollection.1140527 | ParallelTaskCollection-N1 | NEW | NEW at Fri Feb 22 16:39:34 2013 |
+--------------------------------+---------------------------+-------+---------------------------------+

40 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

This command will only show the top-level tasks, e.g. the main tasks created by the GC3 script. If you want to
see all the tasks related to the session run the command with the option -r:

$ gsession list SESSION_DIRECTORY -r
+---+---------------------------+------------+--+
| JobID | Job name | State | Info |
+---+---------------------------+------------+--+
ParallelTaskCollection.1140527	ParallelTaskCollection-N1	NEW	NEW at Fri Feb 22 16:39:34 2013
WarholizeWorkflow.1140528	WarholizedWorkflow	RUNNING	RUNNING at Fri Feb 22 16:39:34 2013
GrayScaleConvertApplication.1140529		TERMINATED	TERMINATED at Fri Feb 22 16:39:25 2013
TricolorizeMultipleImages.1140530	Warholizer_Parallel	NEW	
TricolorizeImage.1140531	TricolorizeImage	NEW	
CreateLutApplication.1140532		NEW	
TricolorizeImage.1140533	TricolorizeImage	NEW	
CreateLutApplication.1140534		NEW	
TricolorizeImage.1140535	TricolorizeImage	NEW	
CreateLutApplication.1140536		NEW	
TricolorizeImage.1140537	TricolorizeImage	NEW	
CreateLutApplication.1140538		NEW	
+---+---------------------------+------------+--+

To have the full history of the session run gsession log:

$ gsession log SESSION_DIRECTORY
Feb 22 16:39:01 GrayScaleConvertApplication.1140529: Submitting to 'hobbes' at Fri Feb 22 16:39:01 2013
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: RUNNING
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: SUBMITTED
Feb 22 16:39:08 GrayScaleConvertApplication.1140529: Submitted to 'hobbes' at Fri Feb 22 16:39:08 2013
Feb 22 16:39:08 WarholizeWorkflow.1140528: SUBMITTED
Feb 22 16:39:24 GrayScaleConvertApplication.1140529: TERMINATING
Feb 22 16:39:25 WarholizeWorkflow.1140528: RUNNING
Feb 22 16:39:25 ParallelTaskCollection.1140527: RUNNING
Feb 22 16:39:25 GrayScaleConvertApplication.1140529: Final output downloaded to 'Warholized.lena.jpg'
Feb 22 16:39:25 GrayScaleConvertApplication.1140529: TERMINATED
Feb 22 16:39:34 WarholizeWorkflow.1140528: NEW
Feb 22 16:39:34 ParallelTaskCollection.1140527: NEW
Feb 22 16:39:34 WarholizeWorkflow.1140528: RUNNING

To abort a session, run the gsession abort command:

$ gsession abort SESSION_DIRECTORY

This will kill all the running jobs and retrieve the results of the terminated jobs, but will leave the session directory
untouched. To also delete the session directory, run gsession delete:

$ gsession delete SESSION_DIRECTORY

gstat: monitor the status of submitted jobs

To see the status of all the jobs you have submitted, use the gstat command. Typing:

gstat -s SESSION

will print to the screen a table like the following:

Job ID Status
====================
job.12 TERMINATED
job.15 SUBMITTED
job.16 RUNNING
job.17 RUNNING
job.23 NEW

2.1. User Documentation 41

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Note: If you have never submitted any job, or if you have cleared your job list with the gclean command, then
gstat will print nothing to the screen!

A job can be in one and only one of the following states:

NEW

The job has been created but not yet submitted: it only exists on the local disk.

RUNNING

The job is currently running – there’s nothing to do but wait.

SUBMITTED

The job has been sent to a compute resource for execution – it should change to RUNNING status
eventually.

STOPPED

The job was sent to a remote cluster for execution, but it is stuck there for some unknown reason.
There is no automated procedure in this case: the best thing you can do is to contact the systems
administrator to determine what has happened.

UNKNOWN

Job info is not found, possibly because the remote resource is currently not accessible due to a network
error, a misconfiguration or because the remote resource is not available anymore. When the root
cause is fixed, and the resource is available again, the status of the job should automatically move to
another state.

TERMINATED

The job has finished running; now there are three things you can do:

1. Use the gget command to get the command output files back from the remote execution cluster.

2. Use the gclean command to remove this job from the list. After issuing gclean on a job,
any information on it is lost, so be sure you have retrieved any interesting output with gget
before!

3. If something went wrong during the execution of the job (it did not complete its execution or
-possibly- it did not even start), you can use the ginfo command to try to debug the problem.

The list of submitted jobs persists from one session to the other: you can log off, shut your computer down, then
turn it on again next day and you will see the same list of jobs.

Note: Completed jobs persist in the gstat list until they are cleared off with the gclean command.

gtail: peeking at the job output and error report

Once a job has reached RUNNING status (check with gstat), you can also monitor its progress by looking at the
last lines in the job output and error stream.

An example might clarify this: assume you have submitted a long-running computation as job.16 and you know
from gstat that it got into RUNNING state; then to take a peek at what this job is doing, you issue the following
command:

gtail job.16

This would produce the following output, from which you can deduce how far GAMESS has progressed into the
computation:

42 Chapter 2. Table of Contents

http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

RECOMMEND NRAD ABOVE 50 FOR ZETA'S ABOVE 1E+4

RECOMMEND NRAD ABOVE 75 FOR ZETA'S ABOVE 1E+5

RECOMMEND NRAD ABOVE 125 FOR ZETA'S ABOVE 1E+6

DFT IS SWITCHED OFF, PERFORMING PURE SCF UNTIL SWOFF THRESHOLD IS REACHED.

ITER EX DEM TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR

1 0 0 -1079.0196780290 -1079.0196780290 0.343816910 1.529879639

* * * INITIATING DIIS PROCEDURE * * *

2 1 0 -1081.1910665431 -2.1713885141 0.056618918 0.105322104

3 2 0 -1081.2658345285 -0.0747679855 0.019565324 0.044813607

By default, gtail only outputs the last 10 lines of a job output/error stream. To see more, use the command line
option -n; for example, to see the last 25 lines of the output, issue the command:

gtail -n 25 job.16

The command gtail is especially useful for long computations: you can see how far a job has gotten and, e.g.,
cancel it if it’s gotten stuck into an endless/unproductive loop.

To “keep an eye” over what a job is doing, you can add the -f option to gtail: this will run gtail in “follow”
mode, i.e., gtail will continue to display the contents of the job output and update it as time passes, until you
hit Ctrl+C to interrupt it.

gkill: cancel a running job

To cancel a running job, you can use the command gkill. For instance, to cancel job.16, you would type the
following command into the terminal:

gkill job.16

Warning: There’s no way to undo a cancel operation! Once you have issued a gkill command, the job is
deleted and it cannot be resumed. (You can still re-submit it with gresub, though.)

gget: retrieve the output of finished jobs

Once a job has reached RUNNING status (check with gstat), you can retrieve its output files with the gget
command. For instance, to download the output files of job.15 you would use:

gget job.15

This command will print out a message like:

Job results successfully retrieved in '/path/to/some/directory'

If you are not running the gget command on your computer, but rather on a shared front-end like ocikbgtw,
you can copy+paste the path within quotes to the sftp command to get the files to your usual workstation. For
example, you can run the following command in a terminal on your computer to get the output files back to your
workstation:

sftp ocikbgtw:'/path/to/some/directory'

This will take you to the directory where the output files have been stored.

2.1. User Documentation 43

http://kb.iu.edu/data/akqg.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gclean: remove a completed job from the status list

Jobs persist in the gstat list until they are cleared off; you need to use the gclean command for that.

Just call the gclean command followed by the job identifier job.NNN. For example:

gclean job.23

In normal operation, you can only remove jobs that are in the TERMINATED status; if you want to force gclean
to remove a job that is not in any one of those states, just add -f to the command line.

gresub: re-submit a failed job

In case a job failed for accidental causes (e.g., the site where it was running went unexpectedly down), you can
re-submit it with the gresub command.

Just call gresub followed by the job identifier job.NNN. For example:

gresub job.42

Resubmitting a job that is not in a terminal state (i.e., TERMINATED) results in the job being killed (as with
gkill) before being submitted again. If you are unsure what state a job is in, check it with gstat.

gservers: list available resources

The gservers command prints out information about the configured resources. For each resource, a summary
of the information recorded in the configuration file and the current resource status is printed. For example:

$ gservers
+--+
| smscg |
+==+
| Frontend host name / frontend giis.smscg.ch |
| Access mode / type arc0 |
| Authorization name / auth smscg |
| Accessible? / updated 1 |
| Total number of cores / ncores 4000 |
| Total queued jobs / queued 3475 |
| Own queued jobs / user_queued 0 |
| Own running jobs / user_run 0 |
| Max cores per job / max_cores_per_job 256 |
| Max memory per core (MB) / max_memory_per_core 2000 |
| Max walltime per job (minutes) / max_walltime 1440 |
+--+

The meaning of the printed fields is as follows:

• The title of each box is the “resource name”, as you would write it after the -r option to gsub.

• Access mode / type: it is the kind of software that is used for accessing the resource; consult Section
Configuration File for more information about resource types.

• Authorization name / auth: this is paired with the Access mode / type, and identifies a section in the config-
uration file where authentication information for this resource is stored; see Section Configuration File for
more information.

• Accessible? / updated: whether you are currently authorized to access this resource; note that if this turns
False or 0 for resources that you should have access to, then something is wrong either with the state of
your system, or with the resource itself. (The procedure on how to diagnose this is too complex to list here;
consult your friendly systems administrator :-))

• Total number of cores: the total number of cores present on the resource. Note this can vary over time as
cluster nodes go in and out of service: computers break, then are repaired, then break again, etc.

44 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• Total queued jobs: number of jobs (from all users) waiting to be executed on the remote compute cluster.

• Own queued jobs: number of jobs (submitted by you) waiting to be executed on the remote compute cluster.

• Own running jobs: number of jobs (submitted by you) currently executing on the remote compute cluster.

• Max cores per job: the maximum number of cores that you can request for a single computational job on
this resource.

• Max memory per core: maximum amount of memory (per core) that you can request on this resource. The
amount shows the maximum requestable memory in MB.

• Max walltime per job: maximum duration of a computational job on this resource. The amount shows the
maximum time in seconds.

The whole point of GC3Utils is to abstract job submission and management from detailed knowledge of the
resources and their hardware and software configuration, but it is sometimes convenient and sometimes necessary
to get into this level of detail...

ginfo: accessing low-level details of a job

It is sometimes necessary, for debugging purposes, to print out all the details about a job; the ginfo command
does just that: prints all the details that GC3Utils know about a single job.

For instance, to print out detailed information about job.13 in session TEST1, you would type:

ginfo -s TEST1 job.13

For a job in RUNNING or SUBMITTED state, only little information is known: basically, where the job is running,
and when it was started:

$ ginfo -s XXX job.13
job.13

execution_targets: hera.wsl.ch
log:

SUBMITTED at Wed Mar 7 17:40:07 2012
Submitted to 'smscg' at Wed Mar 7 17:40:07 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/593513311384071771546195
resource_name: smscg
state_last_changed: 1331138407.33
timestamp:

SUBMITTED: 1331138407.33

If you omit the job number, information about all jobs in the session will be printed.

Most of the output is only useful if you are familiar with GC3Utils inner working. Nonetheless, ginfo output is
definitely something you should include in any report about a misbehaving job!

For a finished job, the information is more complete and can include error messages in case the job has failed:

$ ginfo -s TEST1 job.13
job.13

cores: 1
download_dir: /home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01
execution_targets: idgc3grid01.uzh.ch
log:

SUBMITTED at Wed Mar 7 15:52:37 2012
Submitted to 'idgc3grid01' at Wed Mar 7 15:52:37 2012
TERMINATING at Wed Mar 7 15:54:52 2012
Final output downloaded to '/home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01'
TERMINATED at Wed Mar 7 15:54:53 2012
Execution of gamess terminated normally wed mar 7 15:52:42 2012

lrms_jobid: gsiftp://idgc3grid01.uzh.ch:2811/jobs/2938713311319571678156670
lrms_jobname: exam01
original_exitcode: 0

2.1. User Documentation 45

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

queue: all.q
resource_name: idgc3grid01
state_last_changed: 1331132093.18
stderr_filename: exam01.out
stdout_filename: exam01.out
timestamp:

SUBMITTED: 1331131957.49
TERMINATED: 1331132093.18
TERMINATING: 1331132092.74

used_cputime: 0
used_memory: 492019
used_walltime: 60

With option -v, ginfo output is even more verbose and complete, and includes information about the application
itself, the input and output files, plus some backend-specific information:

$ ginfo -c -s TEST1 job.13
job.13

application_tag: gamess
arguments: exam01.inp
changed: False
environment:
executable: /$GAMESS_LOCATION/nggms
execution:

_arc0_state_last_checked: 1331138407.33
_exitcode: None
_signal: None
_state: SUBMITTED
execution_targets: hera.wsl.ch
log:

SUBMITTED at Wed Mar 7 17:40:07 2012
Submitted to 'smscg' at Wed Mar 7 17:40:07 2012

lrms_jobid: gsiftp://hera.wsl.ch:2811/jobs/593513311384071771546195
resource_name: smscg
state_last_changed: 1331138407.33
timestamp:

SUBMITTED: 1331138407.33
inp_file_path: test/data/exam01.inp
inputs:

file:///home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/test/data/exam01.inp: exam01.inp
job_name: exam01
jobname: exam01
join: True
output_base_url: None
output_dir: /home/rmurri/gc3/gc3pie.googlecode.com/gc3pie/gc3apps/gamess/exam01
outputs:

exam01.dat: file, , exam01.dat, None, None, None, None
exam01.out: file, , exam01.out, None, None, None, None

persistent_id: job.33998
requested_architecture: None
requested_cores: 1
requested_memory: 2
requested_walltime: 8
stderr: None
stdin: None
stdout: exam01.out
tags: APPS/CHEM/GAMESS-2010
verno: None

46 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gselect: select job ids from from a session

The gselect command allows you to select Job IDs from a GC3Pie session that satisfy the selected criteria.
This command is usually used in combination with gresub, gkill, ginfo, gget or gclean, for instance:

$ gselect -l STOPPED | xargs gresub

The output of this command is a list of Job IDs, one per line. The criteria specified by command-line options will
be AND’ed together, i.e., a job must satisfy all of them in order to be selected.

You can select a job based on the following criteria:

JobID regexp

Use option –jobid REGEXP to select jobs whose ID matches the supplied regular expression (case
insensitive)

Job state

Use option –state STATE[,STATE...] to select jobs in one of the specified states, for instance to select
jobs in either STOPPED or SUBMITTED state, run gselect –state STOPPED,SUBMITTED.

exit status

You can select jobs that terminated with exit status equal to 0 with –ok option. To select failed jobs
instead (exit status different from 0), use option –failed

Submission time

Use option –submitted-before DATE and –submitted-after DATE to select jobs submitted before or
after a specific date. DATE must be in a human readable format recognized by the parsedate-
time <https://pypi.python.org/pypi/parsedatetime/> module, for instance in 2 hours, yesterday or 10
November 2014, 1pm.

gcloud: manage VMs created by the EC2 backend

The gcloud command allows you to show and manage VMs created by the EC2 backend.

To show a list of VMs currently running on the EC2 resources correctly configured run:

$ gcloud list
====================================
VMs running on EC2 resource `hobbes`
====================================

+------------+---------+---------------+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---------------+-------------+--------------+---------+
| i-0000053e | running | 130.60.193.45 | 1 | ami-00000035 | antonio |
+------------+---------+---------------+-------------+--------------+---------+

This command will show various information, if available, including the number of jobs currently running (or in
TERMINATED state) on those VM, so that you can easily identify if there is a VM which is not used by any of
yours script and you can safely terminate it.

If you want to terminate a VM run the gcloud terminate command. In this case, however, you also have to specify
the name of the resource with the option -r, and the ID of the VM you want to terminate:

$ gcloud terminate -r hobbes i-0000053e

An empty output is a signal that the VM has been terminated.

The EC2 backend keeps track of all the VM it created, so that if a VM is not needed anymore it is able to terminate
it automatically. However, sometimes you may need to keep a VM up&running and thus you need to tell the EC2
backend to ignore that VM.

2.1. User Documentation 47

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

This is possible with the gcloud forget command. You must supply the correct resource name with -r
RESOURCE_NAME and a valid VM ID, and if the command succeeds then the VM will never be used by the
EC2 backend. Please note also that after running gcloud forget, the VM will not be shown in the output of gcloud
list:

The following example will explain the behavior:

$ gcloud list -r hobbes

====================================
VMs running on EC2 resource `hobbes`
====================================

+------------+---------+---------------+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---------------+-------------+--------------+---------+
| i-00000540 | pending | 130.60.193.45 | N/A | ami-00000035 | antonio |
+------------+---------+---------------+-------------+--------------+---------+

then we run gcloud forget:

$ gcloud forget -r hobbes i-00000540

and we run again gcloud list:

$ gcloud list -r hobbes

====================================
VMs running on EC2 resource `hobbes`
====================================

no known VMs are currently running on this resource.

You can also create a new VM using the default settings using the gcloud run command. In this case too you have
to specify the -r command line option. The output of this command contains some basic information about the
created VM:

$ gcloud run -r hobbes
+------------+---------+---+-------------+--------------+---------+
| id | state | public ip | Nr. of jobs | image id | keypair |
+------------+---------+---+-------------+--------------+---------+
| i-00000541 | pending | server-4e68ebc4-ea52-45ff-82d0-79699300b323 | N/A | ami-00000035 | antonio |
+------------+---------+---+-------------+--------------+---------+

Please note that while the VM is still in pending state, the value of the public ip field may be meaningless. A
successive run of gcloud list should show you the correct public ip.

Troubleshooting GC3Pie

This page lists a number of errors and issues that you might run into, together with their solution. Please use the
GC3Pie mailing list for further help and for any problem not reported here!

Each section covers a different Python error; the section is named after the error name appearing in the last line of
the Python traceback. (See section What is a Python traceback? below)

48 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Contents

• Troubleshooting GC3Pie
– What is a Python traceback?
– Common errors using GC3Pie

* AttributeError: module object has no attribute StringIO
* DistributionNotFound
* ImportError: No module named pstats
* NoResources: Could not initialize any computational resource - please check log and con-

figuration file.
* ValueError: I/O operation on closed file

What is a Python traceback?

A traceback is a long Python error message, detailing the call stack in the code that lead to a specific error
condition.

Tracebacks always look like this one (the number of lines printed, the files involved and the actual error message
will, of course, vary):

Traceback (most recent call last):
File "/home/mpackard/gc3pie/bin/gsub", line 9, in <module>
load_entry_point('gc3pie==1.0rc7', 'console_scripts', 'gsub')()

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/gc3utils/frontend.py", line 137, in main
import gc3utils.commands

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/gc3utils/commands.py", line 31, in <module>
import cli.app

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/app.py", line 37, in <module>
from cli.util import ifelse, ismethodof

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/util.py", line 28, in <module>
BaseStringIO = StringIO.StringIO

AttributeError: 'module' object has no attribute 'StringIO'

Let’s analyize how a traceback is formed, top to bottom.

A traceback is always started by the line:

Traceback (most recent call last):

Then follow a number of line pairs like this one:

File "/home/mpackard/gc3pie/lib/python2.5/site-packages/gc3pie-1.0rc7-py2.5.egg/gc3utils/frontend.py", line 137, in main
import gc3utils.commands

The first line shows the file name and the line number where the program stopped; the second line displays the
instruction that Python was executing when the error occurred. We shall always omit this part of the traceback in
the listings below.

Finally, the traceback ends with the error message on the last line:

AttributeError: 'module' object has no attribute 'StringIO'

Just look up this error message in the section headers below; if you cannot find any relevant section, please write
to the GC3Pie mailing list for help.

Common errors using GC3Pie

This section section lists Python errors that may happen when using GC3Pie; each section is named after the error
name appearing in the last line of the Python traceback. (See section What is a Python traceback? above.)

If you get an error that is not listed here, please get in touch via the GC3Pie mailing list.

2.1. User Documentation 49

mailto:gc3pie@googlegroups.com
mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

AttributeError: module object has no attribute StringIO This error:

Traceback (most recent call last):
...
File "/home/mpackard/gc3pie/lib/python2.5/site-packages/pyCLI-2.0.2-py2.5.egg/cli/util.py",

line 28, in <module>
BaseStringIO = StringIO.StringIO

AttributeError: 'module' object has no attribute 'StringIO'

is due to a conflicts of the pyCLI library (prior to version 2.0.3) and the Debian/Ubuntu package *python-stats*

There are three ways to get rid of the error:

1. Uninstall the *python-stats* package <python-stats> (run the command apt-get remove
python-stats as user root)

2. Upgrade pyCLI to version 2.0.3 at least.

3. Upgrade GC3Pie, which will force an upgrade of pyCLI.

DistributionNotFound If you get this error:

Traceback (most recent call last):
...

pkg_resources.DistributionNotFound: gc3pie==1.0rc2

It usually means that you didn’t run source ../bin/activate; ./setup.py develop when upgrad-
ing GC3Pie.

Please re-do the steps in the GC3Pie Upgrade instructions to fix the error.

ImportError: No module named pstats This error only occurs on Debian and Ubuntu GNU/Linux:

Traceback (most recent call last):
File ".../pyCLI-2.0.2-py2.6.egg/cli/util.py", line 19, in <module>

import pstats
ImportError: No module named pstats

To solve the issue: install the *python-profiler* package <python-profiler>:

apt-get install python-profiler # as `root` user

NoResources: Could not initialize any computational resource - please check log and configuration file.
This error:

Traceback (most recent call last):
...
File ".../src/gc3libs/core.py", line 150, in submit
raise gc3libs.exceptions.NoResources("Could not initialize any computational resource"

gc3libs.exceptions.NoResources: Could not initialize any computational resource - please check log and configuration file.

can have two different causes:

1. You didn’t create a configuration file, or you did not list any resource in it.

2. Some other error prevented the resources from being initialized, or the configuration file from being properly
read.

ValueError: I/O operation on closed file Sample error traceback (may be repeated multiple times over):

50 Chapter 2. Table of Contents

http://pypi.python.org/pypi/pyCLI

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Traceback (most recent call last):
File "/usr/lib/python2.5/logging/__init__.py", line 750, in emit
self.stream.write(fs % msg)

ValueError: I/O operation on closed file

This is discussed in Issue 182; a fix have been committed to release 1.0, so if you are seeing this error, you are
running a pre-release version of GC3Pie and should Upgrade.

User-visible changes across releases

This is a list of user-visible changes worth mentioning. In each new release, items are added to the
top of the file and identify the version they pertain to.

Contents

• User-visible changes across releases
– GC3Pie 2.4

* New features
– GC3Pie 2.3

* Incompatible changes
* New features
* Important bug fixes

– GC3Pie 2.2
* New features
* Changes to command-line utilities
* Important bug fixes

– GC3Pie 2.1
* New features and incompatible changes
* Changes to command-line utilities

– GC3Pie 2.0
* New features and incompatible changes
* Configuration file changes
* Changes to command-line utilities
* API changes

– GC3Pie 1.0
* Configuration file changes
* Command-line utilities changes

– GC3Pie 0.10

GC3Pie 2.4

New features

• The environment variable GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL can be set to yes or 1 to
cause GC3Pie to abort if any errors occur while initializing the configured resources. The default behavior
of GC3Pie is instead to keep running until there is at least one resource that can be used.

• A resource is now automatically disabled if an unrecoverable error occurs during its use.

GC3Pie 2.3

Incompatible changes

• The ARC backends and supporting code have been removed: it is no longer possible to use GC3Pie to
submit tasks to an ARC job manager.

2.1. User Documentation 51

http://code.google.com/p/gc3pie/issues/detail?id=182

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• The environment variable GC3PIE_NO_CATCH_ERRORS now can specify a list of patterns to selectively
unignore unexpected/generic errors in the code. As this feature should only be used in debugging code, we
allow ourselves to break backwards compatibility.

• The cloud and mathematics libraries are no longer installed by default with pip install gc3pie –
please use:

pip install gc3pie[openstack,ec2,optimizer]

to install support for all optional backends and libraries.

• The gc3libs.utils.ifelse function was removed in favor of Python’s ternary operator.

New features

• New task collection DependentTaskCollection to run a collection of tasks with given pre/post de-
pendencies across them.

• GC3Pie will now parse and obey the Port, Identity, User, ConnectionTimeout, and
ProxyCommand options from the SSH config file. Location of an alternate configuration file to use with
GC3Pie can be set in any [auth/*] section of type SSH; see the Configuration File reference for details.
Thanks to Niko Eherenfeuchter and Karandash8 for feature requests and preliminary implementations.

• Application prologue and epilogue scripts can now be embedded in the GC3Pie configuration file, or refer-
enced by file name.

• New selection options have been added to the gselect command.

• gc3libs.Configuration will now raise different exceptions depending on whether no files could be read
(NoAccessibleConfigurationFile) or could not be parsed (NoValidConfigurationFile).

Important bug fixes

• Shell metacharacters are now allowed in Application arguments. Each argument string is now properly
quoted before passing it to the execution layer.

• LSF backend updated to work with both bjobs and bacct for accounting, or to parse information provided
in the final output file as a last resort.

• All backends should now set a Task’s returncode and exitcode values according to the documented meaning.
Thanks to Y. Yakimovitch for reporting the issue.

GC3Pie 2.2

New features

• New openstack backend for running jobs on ephemeral VMs on OpenStack-compatible IaaS cloud sys-
tems. This is preferred over the OpenStack EC2 compatibility layer.

• New configurable scheduler for GC3Pie’s Engine

• Session-based scripts can now snapshot the output of RUNNING jobs at every cycle.

• ARC backends are now deprecated: they will be removed in the next major version of GC3Pie.

• The pbs backend can now handle also Altair’s PBSPro.

Changes to command-line utilities

• gget: New option -A to download output files of all tasks in a session.

• gget: New option -c/--changed-only to only download files that have apparently changed remotely.

• The GC3Apps collection has been enriched with several new applications.

52 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Important bug fixes

• Working directory for remote jobs using the shellcmd backend is now stored in /var/tmp instead of
/tmp, which should allow results to be retrieved even after a reboot of the remote machine.

GC3Pie 2.1

New features and incompatible changes

• GC3Pie now requires Python 2.6 or above to run.

• New ec2 backend for running jobs on ephemeral VMs on EC2-compatible IaaS cloud systems.

• New package gc3libs.optimizer to find local optima of functions that can be computed through a job. Cur-
rently only implements the “Differential Evolution” algorithm, but the framework is generic enough to plug
any genetic algorithm.

• New configuration options prolog_content and epilog_content, to allow execute oneliners before
or after the command without having to create an auxiliary file.

• New resourcedir option for shellcmd resources. This is used to modify the default value for the
directory containing job informations.

Changes to command-line utilities

• New command gcloud to interface with cloud-based VMs that were spawned by GC3Pie to run jobs.

• Table output now uses a different formatting (we use Python’s prettytable package instead of the texttable
package that we were using before, due to Py3 compatibility).

GC3Pie 2.0

New features and incompatible changes

• GC3Pie can now run on MacOSX.

• A session now has a configurable storage location, which can be a directory on the filesystem (Filesystem-
Store, the default so far) or can be a table in an SQL database (of any kind supported by SQLAlchemy).

• New ARC1 backend to use ARC resources through the new NorduGrid 1.x library API.

• New backend “subprocess”: execute applications as local processes.

• New backends for running on various batch-queueing systems: SLURM, LSF, PBS.

• Implement recursive upload and download of directories if they are specified in an Application‘s input or
output attribute.

• New execution state TERMINATING: task objects are in this state when execution is finished remotely, but
the task output has not yet been retrieved.

• Reorganize documentation and move it to http://gc3pie.readthedocs.org/

• Script logging is now controlled by a single configuration file .gc3/gc3utils.log.conf

• Session-based scripts now print WARNING messages to STDERR by default (previously, only ERROR
messages were logged).

• Add caching to ARC backends, to reduce the number of network queries.

• Use GNU ”.~NUMBER~” format for backup directories.

Configuration file changes

• Rename ARC0 resource type to arc0

2.1. User Documentation 53

http://gc3pie.readthedocs.org/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Changes to command-line utilities

• New gsession command to manage sessions.

• The glist command was renamed to gservers

• The gsub and gnotify commands were removed.

• The PATH tag no longer gets any special treatment in session-based scripts --output processing.

• ginfo: New option --tabular to print information in table format.

• gkill: New option -A/–all to remove all jobs in a session.

• Use the rungms script to execute GAMESS.

API changes

• Module gc3libs.dag has been renamed to gc3libs.workflow.

• API changes in gc3libs.cmdline.SessionBasedScript allow new_tasks() in SessionBased-
Script instances to return Task instances instead of quadruples.

• Interpret Application.requested_memory as the total memory for the job.

• the Resource and LRMS objects were merged

• the gc3libs.scheduler module has been removed; its functionality is now incorporated in the
Application class.

• configuration-related code moved into gc3libs.config module

• removed the application registry.

• New package gc3libs.compat to provide 3rd-party functionality that is not present in all supported versions
of Python.

• Implement gc3libs.ANY_OUTPUT to retrieve the full contents of the output directory, whatever it is.

• New RetryableTask class to wrap a task and re-submit it on failure until some specified condition is met.

GC3Pie 1.0

Configuration file changes

• Renamed configuration file to gc3pie.conf: the file gc3utils.conf will no longer be read!

• SGE clusters must now have type = sge in the configuration file (instead of type = ssh-sge)

• All computational resource must have an architecture = ... line; see the ConfigurationFile wiki
page for details

• Probably more changes than it’s worth to list here: check your configuration against the configuration_
page!

Command-line utilities changes

• GC3Utils and GC3Apps (grosetta/ggamess/etc.) now all accept a -s/--session option for lo-
cating the job storage directory: this allows grouping jobs into folders instead of shoveling them all into
~/.gc3/jobs.

• GC3Apps: replaced option -t/--table with -l/--states. The new option prints a table of submitted
jobs in addition to the summary stats; if a comma-separated list of job states follows the option, only job in
those states are printed.

• Command gstat will now print a summary of the job states if the list is too long to fit on screen; use the
-v option to get the full job listing regardless of its length.

54 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• Command gstat can now print information on jobs in a certain state only; see help text for option
--state

• Removed -l option from ginfo; use -v instead.

• GC3Utils: all commands accepting multiple job IDs on the command line, now exit with the number of
errors/failures occurred. Since exit codes are practically limited to 7 bits, exit code 126 means that more
than 125 failures happened.

GC3Pie 0.10

• First release for public use outside of GC3

2.2 Programmer Documentation

This document is the technical reference for the GC3Libs programming model, aimed at programmers who want
to use GC3Libs to implement computational workflows in Python.

The Programming overview section is the starting point for whoever wants to start developing applications with
GC3Pie. It gives an overview of the main components of the library and how they interact with each other.

The Tutorials section contains documentation that describes in more detail the various components discussed in
the programming overview, as well as many working examples (took from exercises done during the training
events) and the Warholize Tutorial: a step-by-step tutorial that will show you how to write a complex GC3Pie
workflow.

The GC3Libs programming API section instead contains the API reference of GC3Pie library.

2.2.1 Programming overview

Computational job lifecycle

A computational job (for short: job) is a single run of a non-interactive application. The prototypical example is a
run of GAMESS on a single input file.

The GC3Utils commands support the following workflow:

1. Submit a GAMESS job (with a single input file): ggamess

2. Monitor the status of the submitted job: gstat

3. Retrieve the output of a job once it’s finished: gget

Usage and some examples on how to use the mentioned commands are provided in the next sections

Managing jobs with GC3Libs

GC3Libs takes an application-oriented approach to asynchronous computing. A generic Application class
provides the basic operations for controlling remote computations and fetching a result; client code should derive
specialized sub-classes to deal with a particular application, and to perform any application-specific pre- and
post-processing.

The generic procedure for performing computations with GC3Libs is the following:

1. Client code creates an instance of an Application sub-class.

2. Asynchronous computation is started by submitting the application object; this associates the application
with an actual (possibly remote) computational job.

3. Client code can monitor the state of the computational job; state handlers are called on the application object
as the state changes.

2.2. Programmer Documentation 55

http://www.gc3.uzh.ch/
http://www.msg.ameslab.gov/gamess/
http://www.msg.ameslab.gov/gamess/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

4. When the job is done, the final output is retrieved and a post-processing method is invoked on the application
object.

At this point, results of the computation are available and can be used by the calling program.

The Application class (and its sub-classes) alow client code to control the above process by:

1. Specifying the characteristics (computer program to run, input/output files, memory/CPU/duration require-
ments, etc.) of the corresponding computational job. This is done by passing suitable values to the
Application constructor. See the Application constructor documentation for a detailed descrip-
tion of the parameters.

2. Providing methods to control the “life-cycle” of the associated computational job: start, check execution
state, stop, retrieve a snapshot of the output files. There are actually two different interfaces for this, detailed
below:

(a) A passive interface: a Core or a Engine object is used to start/stop/monitor jobs associated with the
given application. For instance:

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

start the remote computation
g.submit(a)

periodically monitor job execution
g.update_job_state(a)

retrieve output when the job is done
g.fetch_output(a)

The passive interface gives client code full control over the lifecycle of the job, but cannot support
some use cases (e.g., automatic application re-start).

As you can see from the above example, the passive interface is implemented by methods in the Core
and Engine classes (they implement the same interface). See those classes documentation for more
details.

(b) An active interface: this requires that the Application object be attached to a Core or Engine
instance:

a = GamessApplication(...)

create a `Core` object; only one instance is needed
g = Core(...)

tell application to use the active interface
a.attach(g)

start the remote computation
a.submit()

periodically monitor job execution
a.update_job_state()

retrieve output when the job is done
a.fetch_output()

With the active interface, application objects can support automated restart and similar use-cases.

When an Engine object is used instead of a Core one, the job life-cycle is automatically managed,
providing a fully asynchronous way of executing computations.

56 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The active interface is implemented by the Task class and all its descendants (including
Application).

3. Providing “state transition methods” that are called when a change in the job execution state is detected;
those methods can implement application specific behavior, like restarting the computational job with
changed input if the alloted duration has expired but the computation has not finished. In particular, a
postprocess method is called when the final output of an application is available locally for processing.

The set of “state transition methods” currently implemented by the Application class are: new(),
submitted(), running(), stopped(), terminated() and postprocess(). Each method
is called when the execution state of an application object changes to the corresponding state; see each
method’s documentation for exact information.

In addition, GC3Libs provides collection classes, that expose interfaces 2. and 3. above, allowing one to control a
set of applications as a single whole. Collections can be nested (i.e., a collection can hold a mix of Application
and TaskCollection objects), so that workflows can be implemented by composing collection objects.

Note that the term computational job (or just job, for short) is used here in a quite general sense, to mean any
kind of computation that can happen independently of the main thread of the calling program. GC3Libs cur-
rently provide means to execute a job as a separate process on the same computer, or as a batch job on a remote
computational cluster.

Execution model of GC3Libs applications

An Application can be regarded as an abstraction of an independent asynchronous computation, i.e., a GC3Libs’
Application behaves much like an independent UNIX process (but it can actually run on a separate remote com-
puter). Indeed, GC3Libs’ Application objects mimic the POSIX process model: Application are started by a parent
process, run independently of it, and need to have their final exit code and output reaped by the calling process.

The following table makes the correspondence between POSIX processes and GC3Libs’ Application objects ex-
plicit.

os module function Core function purpose
exec Core.submit start new job
kill(..., SIGTERM) Core.kill terminate executing job
wait(..., WNOHANG) Core.update_job_state get job status

• Core.fetch_output retrieve output

Note:
1. With GC3Libs, it is not possible to send an arbitrary signal to a running job: jobs can only be started and

stopped (killed).

2. Since POSIX processes are always executed on the local machine, there is no equivalent of the GC3Libs
fetch_output.

Application exit codes

POSIX encodes process termination information in the “return code”, which can be parsed through
os.WEXITSTATUS, os.WIFSIGNALED, os.WTERMSIG and relative library calls.

Likewise, GC3Libs provides each Application object with an execution.returncode attribute, which is a valid
POSIX “return code”. Client code can therefore use os.WEXITSTATUS and relatives to inspect it; convenience
attributes execution.signal and execution.exitcode are available for direct access to the parts of the return code.
See Run.returncode() for more information.

However, GC3Libs has to deal with error conditions that are not catered for by the POSIX process model: for
instance, execution of an application may fail because of an error connecting to the remote execution cluster.

2.2. Programmer Documentation 57

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

To this purpose, GC3Libs encodes information about abnormal job termination using a set of pseudo-signal codes
in a job’s execution.returncode attribute: i.e., if termination of a job is due to some grid/batch system/middleware
error, the job’s os.WIFSIGNALED(app.execution.returncode) will be True and the signal code (as gotten from
os.WTERMSIG(app.execution.returncode)) will be one of those listed in the Run.Signals documentation.

Application execution states

At any given moment, a GC3Libs job is in any one of a set of pre-defined states, listed in the table below.
The job state is always available in the .execution.state instance property of any Application or Task object; see
Run.state() for detailed information.

GC3Libs’
Job state

purpose can change to

NEW Job has not yet been submitted/started (i.e., gsub not
called)

SUBMITTED (by gsub)

SUBMIT-
TED

Job has been sent to execution resource RUNNING, STOPPED

STOPPED Trap state: job needs manual intervention (either user- or
sysadmin-level) to resume normal execution

TERMINATED (by gkill),
SUBMITTED (by miracle)

RUNNING Job is executing on remote resource TERMINATED
UN-
KNOWN

Job info not found or lost track of job (e.g., network error
or invalid job ID)

any other state

TERMI-
NATED

Job execution is finished (correctly or not) and will not be
resumed

None: final state

When an Application object is first created, its .execution.state attribute is assigned the state NEW. After
a successful start (via Core.submit() or similar), it is transitioned to state SUBMITTED. Further transitions to
RUNNING or STOPPED or TERMINATED state, happen completely independently of the creator program: the
Core.update_job_state() call provides updates on the status of a job. (Somewhat like the POSIX wait(..., WNO-
HANG) system call, except that GC3Libs provide explicit RUNNING and STOPPED states, instead of encoding
them into the return value.)

The STOPPED state is a kind of generic “run time error” state: a job can get into the STOPPED state if its
execution is stopped (e.g., a SIGSTOP is sent to the remote process) or delayed indefinitely (e.g., the remote
batch system puts the job “on hold”). There is no way a job can get out of the STOPPED state automatically: all
transitions from the STOPPED state require manual intervention, either by the submitting user (e.g., cancel the
job), or by the remote systems administrator (e.g., by releasing the hold).

The UNKNOWN state is a temporary error state: whenever GC3Pie is unable to get any information on the job,
its state move to UNKNOWN. It is usually related to a (hopefully temporary) failure while accessing the remote
resource, because of a network error or because the resource is not correctly configured. After the underlying
cause of the error is fixed and GC3Pie is able again to get information on the job, its state will change to the proper
state.

The TERMINATED state is the final state of a job: once a job reaches it, it cannot get back to any other state.
Jobs reach TERMINATED state regardless of their exit code, or even if a system failure occurred during remote
execution; actually, jobs can reach the TERMINATED status even if they didn’t run at all!

A job that is not in the NEW or TERMINATED state is said to be a “live” job.

Computational job specification

One of the purposes of GC3Libs is to provide an abstraction layer that frees client code from dealing with the
details of job execution on a possibly remote cluster. For this to work, it necessary to specify job characteristics
and requirements, so that the GC3Libs scheduler can select an appropriate computational resource for executing
the job.

GC3Libs Application provide a way to describe computational job characteristics (program to run, input and
output files, memory/duration requirements, etc.) loosely patterned after ARC’s xRSL language.

58 Chapter 2. Table of Contents

http://www.nordugrid.org/documents/xrsl.pdf

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The description of the computational job is done through keyword parameters to the Application constructor,
which see for details. Changes in the job characteristics after an Application object has been constructed are
not currently supported.

UML Diagram

An UML diagram of GC3Pie classes is available (also in PNG format)

2.2.2 GC3Pie programming tutorials

Slides on specific topics

This is a list of tutorials made for the GC3Pie 2012 Training event that has been held in Zurich on 1st and 2nd of
October 2012. The slides and tutorials are an introduction to the GC3Pie python package.

Introduction to GC3Pie

Introduction to the software: what is GC3Pie, what is it for, and an overview of its features for writing
high-throughput computing scripts.

Basic GC3Pie programming

The Application class, the smallest building block of GC3Pie. Introduction to the concept of Job,
states of an application and to the Core class.

Application requirements

How to define extra requirements for an application, such as the minimum amount of memory it will
use, the number of cores needed or the architecture of the CPUs.

Managing applications: the SessionBasedScript class

Introduction to the highest-level interface to build applications with GC3Pie, the SessionBasedScript.
Information on how to create simple scripts that take care of the execution of your applications, from
submission to getting back the final results.

The GC3Utils commands

Low-level tools to aid debugging the scripts.

Introduction to Workflows with GC3Pie

Using a practical example (the Warholize Tutorial) we show how workflows are implemented with
GC3Pie. The following slides will cover in more details the single steps needed to produce a complex
workflow.

ParallelTaskCollection

Description of the ParallelTaskCollection class, used to run tasks in parallel.

StagedTaskCollection

Description of the StagedTaskCollection class, used to run a sequence of a fixed number of jobs.

SequentialTaskCollection

Description of the SequentialTaskCollection class, used to run a sequence of jobs that can be altered
during runtime.

Example scripts

gdemo_simple.py

Simplest script you can create. It only uses Application and Engine classes to create an application,
submit it, check its status and retrieve its output.

2.2. Programmer Documentation 59

https://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/html/_images/gc3libs.UML.png
https://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/html/_images/gc3libs.UML.svg
https://ocikbapps.uzh.ch/gc3wiki/teaching/gc3pie2012/
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part01.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part03.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part04.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part05.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part06.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part08.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part09.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part10.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/docs/programmers/tutorials/part11.pdf
http://gc3pie.googlecode.com/svn/trunk/gc3pie/examples/gdemo_simple.py

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

grun.py

a SessionBasedScript that executes its argument as command. It can also run it multiple times by
wrapping it in a ParallelTaskCollection or a SequentialTaskCollection, depending on a command line
option. Useful for testing a configured resource.

gdemo_session.py

a simple SessionBasedScript that sums two values by customizing a SequentialTaskCollection.

warholize.py

an enhanched version of the warholize script proposed in the Warholize Tutorial

Warholize Tutorial

In this tutorial we will show you how to use GC3Pie libraries in order to build a command line script which will
run a complex workflow with both parallel and sequential tasks.

The tutorial itself contains the complete source code of the application (cfr. Literate Programming on
Wikipedia), so that you will be able to test/modify it and produce a working warholize.py script by down-
loading the pylit.py:file: script from the PyLit Homepage and running the following command on the
gc3pie/docs/programmers/tutorials/warholize/warholize.txt file, from within the SVN
tree of GC3Pie:

$./pylit warholize.txt warholize.py

Introduction

Warholize is a GC3Pie demo application to produce, from a generic image picture, a new picture like the famous
Warhol’s work: Marylin. The script uses the powerful ImageMagick set of tools (at least version 6.3.5-7). This
tutorial will assume that both ImageMagick and GC3Pie are already installed and configured.

In order to produce a similar image we have to do a series of transformations on the picture:

1. convert the original image to grayscale.

2. colorize the grayscale image using three different colors each time, based on the gray levels. We may,
for instance, make all pixels with luminosity between 0-33% in red, pixels between 34-66% in yellow and
pixels between 67% and 100% in green.

To do that, we first have to:

(a) create a Color Lookup Table (LUT) using a combination of three randomly chosen colors

(b) apply the LUT to the grayscale image

3. Finally, we can merge together all the colorized images and produce our warholized image.

Clearly, step 2) depends on the step 1), and 3) depends on 2), so we basically have a sequence of tasks, but since
step 2) need to create N different independent images, we can parallelize this step.

From top to bottom

We will write our script starting from the top and will descend to the bottom, from the command line script, to the
workflow and finally to the single execution units which compose the application.

The script

The SessionBasedScript class in the gc3libs.cmdline module is used to create a generic script. It already have all
what is needed to read gc3pie configuration files, manage resources, schedule jobs etc. The only missing thing is,
well, your application!

60 Chapter 2. Table of Contents

http://gc3pie.googlecode.com/svn/trunk/gc3pie/examples/grun.py
http://gc3pie.googlecode.com/svn/trunk/gc3pie/examples/gdemo_session.py
http://gc3pie.googlecode.com/svn/trunk/gc3pie/examples/warholize.py
http://en.wikipedia.org/wiki/Literate_programming
https://github.com/gmilde/PyLit
http://artobserved.com/artists/andy-warhol/
http://www.imagemagick.org/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Fig. 2.1: Workflow of the warholize script

Let’s start by creating a new empty file and importing some basic modules:

import os
import gc3libs
from gc3libs.cmdline import SessionBasedScript

we then create a class which inherits from SessionBasedScript (in GC3Pie, most of the customizations are done
by inheriting from a more generic class and overriding the __init__ method and possibly others):

class WarholizeScript(SessionBasedScript):
"""
Demo script to create a `Warholized` version of an image.
"""
version='1.0'

Please note that you must either write a small docstring, or add a description attribute. These values are used when
the script is called with options --help or --version, which are automatically added by GC3Pie.

The way we want to use our script is straightforward:

$ warholize.py inputfile [inputfiles ...]

and this will create a directory Warholized.<inputfile> in which there will be a file called
warhol_<inputfile> containing the desired warholized image (and a lot of temporary files, at least for
now).

But we may want to add some additional options to the script, in order to decide how many colorized pictures the
warholized image will be made of, or if we want to resize the image. SessionBasedScript uses the PyCLI module
which is, in turn, a wrapper around standard argparse (or optparse for older pythons) module. To customize the
script you may define a setup_options method and put in there some calls to SessionBasedScript.add_param(),
which is inherited from cli.app.CommandLineApp:

2.2. Programmer Documentation 61

http://packages.python.org/pyCLI/
http://docs.python.org/library/argparse.html
http://docs.python.org/library/optparse.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

def setup_options(self):
self.add_param('--copies', default=4, type=int,

help="Number of copyes (Default:4). It has to be a perfect square!")

In this example we will accept a --copies option to define how many colorized copies the final picture will
be made of. Please refer to the documentation of the PyCLI module for details on the syntax of the add_param
method.

The heart of the script is, however, the new_tasks method, which will be called to create the initial tasks of the
scripts. In our case it will be something like:

def new_tasks(self, extra):
gc3libs.log.info("Creating main sequential task")
for (i, input_file) in enumerate(self.params.args):

extra_args = extra.copy()
extra_args['output_dir'] = 'Warholized.%s' % os.path.basename(input_file)
yield WarholizeWorkflow(input_file,

self.params.copies,

**extra_args)

new_tasks is used as a generator (but it could return a list as well). Each yielded object is a task. In GC3Pie, a
task is either a single application or a complex workflow, and rapresents an execution unit. In our case we create
a WarholizeWorkflow task which is the workflow described before.

In our case we yield a different WarholizeWorkflow task for each input file. These tasks will run in parallel.

Please note that we are using the gc3libs.log module to log informations about the execution. This module works
like the logging module and has methods like error, warning, info or debug, but its logging level is automatically
configured by SessionBasedScript‘s constructor. This way you can increase the verbosity of your script by simply
adding -v options from the command line.

The workflows

Main sequential workflow The module gc3libs.workflow contains two main objects: SequentialTaskCollection
and ParallelTaskCollection. They execute tasks in serial and in parallel, respectively. We will use both of them
to create our workflow; the first one, WarholizeWorkflow, is a sequential task, therefore we have to inherit from
SequentialTaskCollection and customize its __init__ method:

from gc3libs.workflow import SequentialTaskCollection, ParallelTaskCollection
import math
from gc3libs import Run

class WarholizeWorkflow(SequentialTaskCollection):
"""
Main workflow.
"""

def __init__(self, input_image, copies, **extra_args):
self.input_image = input_image
self.output_image = "warhol_%s" % os.path.basename(input_image)

gc3libs.log.info(
"Producing a warholized version of input file %s "
"and store it in %s" % (input_image, self.output_image))

self.output_dir = os.path.relpath(extra_args.get('output_dir'))

self.copies = copies

Check that copies is a perfect square
if math.sqrt(self.copies) != int(math.sqrt(self.copies)):

raise gc3libs.exceptions.InvalidArgument(

62 Chapter 2. Table of Contents

http://packages.python.org/pyCLI/
http://docs.python.org/library/logging.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

"`copies` argument must be a perfect square.")

self.jobname = extra_args.get('jobname', 'WarholizedWorkflow')
self.grayscaled_image = "grayscaled_%s" % os.path.basename(self.input_image)

Up to now we just parsed the arguments. The following lines, instead, create the first task that we want to execute.
By now, we can create only the first one, GrayScaleConvertApplication, which will produce a grayscale image
from the input file:

self.tasks = [
GrayScaleConvertApplication(

self.input_image, self.grayscaled_image, self.output_dir,
self.output_dir),

]

Finally, we call the parent’s constructor.:

SequentialTaskCollection.__init__(
self, self.tasks)

This will create the initial task list, but we have to run also step 2 and 3, and this is done by creating a next method.
This method will be called after all the tasks in self.tasks are finished. We cannot create all the jobs at once because
we don’t have all the needed input files yet. Please note that by creating the tasks in the next method you could
decide at runtime which tasks to run next and what arguments we may want to give to them.

In our case, however, the next method is quite simple:

def next(self, iteration):
last = self.tasks[-1]

if iteration == 0:
first time we got called. We have the grayscaled image,
we have to run the Tricolorize task.
self.add(TricolorizeMultipleImages(

os.path.join(self.output_dir, self.grayscaled_image),
self.copies, self.output_dir))

return Run.State.RUNNING
elif iteration == 1:

second time, we already have the colorized images, we
have to merge them together.
self.add(MergeImagesApplication(

os.path.join(self.output_dir, self.grayscaled_image),
last.warhol_dir,
self.output_image))

return Run.State.RUNNING
else:

self.execution.returncode = last.execution.returncode
return Run.State.TERMINATED

At each iteration, we call self.add() to add an instance of a task-like class (gc3libs.Application,
gc3libs.workflow.ParallelTaskCollection or gc3libs.workflow.SequentialTaskCollection, in our case) to complete
the next step, and we return the current state, which will be gc3libs.Run.State.RUNNING unless we have finished
the computation.

Step one: convert to grayscale GrayScaleConvertApplication is the application responsible to convert to
grayscale the input image. The command we want to execute is:

$ convert -colorspace gray <input_image> grayscaled_<input_image>

To create a generic application we create a class which inherit from gc3libs.Application and we usually only need
to customize the __init__ method:

2.2. Programmer Documentation 63

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

An useful function to copy files
from gc3libs.utils import copyfile

class GrayScaleConvertApplication(gc3libs.Application):
def __init__(self, input_image, grayscaled_image, output_dir, warhol_dir):

self.warhol_dir = warhol_dir
self.grayscaled_image = grayscaled_image

arguments = [
'convert',
os.path.basename(input_image),
'-colorspace',
'gray',
]

gc3libs.log.info(
"Craeting GrayScale convert application from file %s"
"to file %s" % (input_image, grayscaled_image))

gc3libs.Application.__init__(
self,
arguments = arguments + [grayscaled_image],
inputs = [input_image],
outputs = [grayscaled_image, 'stderr.txt', 'stdout.txt'],
output_dir = output_dir,
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Creating a gc3libs.Application is straigthforward: you just call the constructor with the executable, the arguments,
and the input/output files you will need.

If you don’t specify the output_dir directory, gc3pie libraries will create one starting from the class name. If
the output directory exists already, the old one will be renamed.

To do any kind of post processing you can define a terminate method for your application. It will be called after
your application will terminate. In our case we want to copy the gray scale version of the image to the warhol_dir,
so that it will be easily reachable by all other applications:

def terminated(self):
"""Move grayscale image to the main output dir"""
copyfile(

os.path.join(self.output_dir, self.grayscaled_image),
self.warhol_dir)

Step two: parallel workflow to create colorized images

The TricolorizeMultipleImages is responsible to create multiple versions of the grayscale image with different
coloration chosen randomly from a list of available colors. It does it by running multiple instance of Tricol-
orizeImage with different arguments. Since we want to run the various colorization in parallel, it inherits from
gc3libs.workflow.ParallelTaskCollection class. Like we did for GrayScaleConvertApplication, we only need to
customize the constructor __init__, creating the various subtasks we want to run:

import itertools
import random

class TricolorizeMultipleImages(ParallelTaskCollection):
colors = ['yellow', 'blue', 'red', 'pink', 'orchid',

'indigo', 'navy', 'turquoise1', 'SeaGreen', 'gold',
'orange', 'magenta']

def __init__(self, grayscaled_image, copies, output_dir):

64 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.log.info(
"TricolorizeMultipleImages for %d copies run" % copies)

self.jobname = "Warholizer_Parallel"
ncolors = 3
XXX Why I have to use basename???
self.output_dir = os.path.join(

os.path.basename(output_dir), 'tricolorize')
self.warhol_dir = output_dir

Compute a unique sequence of random combination of
colors. Please note that we can have a maximum of N!/3! if N
is len(colors)
assert copies <= math.factorial(len(self.colors)) / math.factorial(ncolors)

combinations = [i for i in itertools.combinations(self.colors, ncolors)]
combinations = random.sample(combinations, copies)

Create all the single tasks
self.tasks = []
for i, colors in enumerate(combinations):

self.tasks.append(TricolorizeImage(
os.path.relpath(grayscaled_image),
"%s.%d" % (self.output_dir, i),
"%s.%d" % (grayscaled_image, i),
colors,
self.warhol_dir))

ParallelTaskCollection.__init__(self, self.tasks)

The main loop will fill the self.tasks list with various TricolorizedImage tasks, each one with an unique combina-
tion of three colors to use to generate the colorized image. The GC3Pie framework will then run these tasks in
parallel, on any available resource.

The TricolorizedImage class is indeed a SequentialTaskCollection, since it has to generate the LUT first, and
then apply it to the grayscale image. We already saw how to create a SequentialTaskCollection: we modify the
constructor in order to add the first job (CreateLutApplication), and the next method will take care of running the
ApplyLutApplication application on the output of the first job:

class TricolorizeImage(SequentialTaskCollection):
"""
Sequential workflow to produce a `tricolorized` version of a
grayscale image
"""
def __init__(self, grayscaled_image, output_dir, output_file,

colors, warhol_dir):
self.grayscaled_image = grayscaled_image
self.output_dir = output_dir
self.warhol_dir = warhol_dir
self.jobname = 'TricolorizeImage'
self.output_file = output_file

if not os.path.isdir(output_dir):
os.mkdir(output_dir)

gc3libs.log.info(
"Tricolorize image %s to %s" % (

self.grayscaled_image, self.output_file))

self.tasks = [
CreateLutApplication(

self.grayscaled_image,
"%s.miff" % self.grayscaled_image,
self.output_dir,

2.2. Programmer Documentation 65

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

colors, self.warhol_dir),
]

SequentialTaskCollection.__init__(self, self.tasks)

def next(self, iteration):
last = self.tasks[-1]
if iteration == 0:

First time we got called. The LUT has been created, we
have to apply it to the grayscale image
self.add(ApplyLutApplication(

self.grayscaled_image,
os.path.join(last.output_dir, last.lutfile),
os.path.basename(self.output_file),
self.output_dir, self.warhol_dir))

return Run.State.RUNNING
else:

self.execution.returncode = last.execution.returncode
return Run.State.TERMINATED

The CreateLutApplication is again an application which inherits from gc3libs.Application. The command we want
to execute is something like:

$ convert -size 1x1 xc:<color1> xc:<color2> xc:<color3> +append -resize 256x1! <output_file.miff>

This will basically create an image 256x1 pixels big, made of a gradient using all the listed colors. The code will
look like:

class CreateLutApplication(gc3libs.Application):
"""Create the LUT for the image using 3 colors picked randomly
from CreateLutApplication.colors"""

def __init__(self, input_image, output_file, output_dir, colors, working_dir):
self.lutfile = os.path.basename(output_file)
self.working_dir = working_dir
gc3libs.log.info("Creating lut file %s from %s using "

"colors: %s" % (
self.lutfile, input_image, str.join(", ", colors)))

gc3libs.Application.__init__(
self,
arguments = [

'convert',
'-size',
'1x1'] + [
"xc:%s" % color for color in colors] + [
'+append',
'-resize',
'256x1!',
self.lutfile,
],

inputs = [input_image],
outputs = [self.lutfile, 'stdout.txt', 'stderr.txt'],
output_dir = output_dir + '.createlut',
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Similarly, the ApplyLutApplication application will run the following command:

$ convert grayscaled_<input_image> <lutfile.N.miff> -clut grayscaled_<input_image>.<N>

This command will apply the LUT to the grayscaled image: it will modify the grayscaled image by coloring a
generic pixel with a luminosity value of n (which will be an integer value from 0 to 255, of course) with the color

66 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

at position n in the LUT image (actually, n+1). Each ApplyLutApplication will save the resulting image to a file
named as grayscaled_<input_image>.<N>.

The class will look like:

class ApplyLutApplication(gc3libs.Application):
"""Apply the LUT computed by `CreateLutApplication` to
`image_file`"""

def __init__(self, input_image, lutfile, output_file, output_dir, working_dir):

gc3libs.log.info("Applying lut file %s to %s" % (lutfile, input_image))
self.working_dir = working_dir
self.output_file = output_file

gc3libs.Application.__init__(
self,
arguments = [

'convert',
os.path.basename(input_image),
os.path.basename(lutfile),
'-clut',
output_file,
],

inputs = [input_image, lutfile],
outputs = [output_file, 'stdout.txt', 'stderr.txt'],
output_dir = output_dir + '.applylut',
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

The terminated method:

def terminated(self):
"""Copy colorized image to the output dir"""
copyfile(

os.path.join(self.output_dir, self.output_file),
self.working_dir)

will copy the colorized image file in the top level directory, so that it will be easier for the last application to find
all the needed files.

Step three: merge all them together At this point we will have in the main output directory a bunch of files
named after grayscaled_<input_image>.N with N a sequential integer and <input_image> the name
of the original image. The last application, MergeImagesApplication, will produce a warhol_<input_image>
image by merging all of them using the command:

$ montage grayscaled_<input_image>.* -tile 3x3 -geometry +5+5 -background white warholized_<input_image>

Now it should be easy to write such application:

import re

class MergeImagesApplication(gc3libs.Application):
def __init__(self, grayscaled_image, input_dir, output_file):

ifile_regexp = re.compile(
"%s.[0-9]+" % os.path.basename(grayscaled_image))

input_files = [
os.path.join(input_dir, fname) for fname in os.listdir(input_dir)
if ifile_regexp.match(fname)]

input_filenames = [os.path.basename(i) for i in input_files]
gc3libs.log.info("MergeImages initialized")
self.input_dir = input_dir

2.2. Programmer Documentation 67

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

self.output_file = output_file

tile = math.sqrt(len(input_files))
if tile != int(tile):

gc3libs.log.error(
"We would expect to have a perfect square"
"of images to merge, but we have %d instead" % len(input_files))

raise gc3libs.exceptions.InvalidArgument(
"We would expect to have a perfect square of images to merge, but we have %d instead" % len(input_files))

gc3libs.Application.__init__(
self,
arguments = ['montage'] + input_filenames + [

'-tile',
'%dx%d' % (tile, tile),
'-geometry',
'+5+5',
'-background',
'white',
output_file,
],

inputs = input_files,
outputs = [output_file, 'stderr.txt', 'stdout.txt'],
output_dir = os.path.join(input_dir, 'output'),
stdout = 'stdout.txt',
stderr = 'stderr.txt',
)

Making the script executable

Finally, in order to make the script executable, we add the following lines to the end of the file. The Warholize-
Scritp().run() call will be executed only when the file is run as a script, and will do all the magic related to argument
parsing, creating the session etc...:

if __name__ == '__main__':
import warholize
warholize.WarholizeScript().run()

Please note that the import warholize statement is important to address issue 95 and make the gc3pie scripts
work with your current session (gstat, ginfo...)

Testing

To test this script I would suggest to use the famous Lena picture, which can be found in the miscelaneous section
of the Signal and Image Processing Institute page. Download the image, rename it as lena.tiff and run the
following command:

$./warholize.py -C 1 lena.tiff --copies 9

(add -r localhost if your gc3pie.conf script support it and you want to test it locally).

After completion a file Warholized.lena.tiff/output/warhol_lena.tiff will be created.

2.2.3 GC3Libs programming API

gc3libs

GC3Libs is a python package for controlling the life-cycle of a Grid or batch computational job.

68 Chapter 2. Table of Contents

http://code.google.com/p/gc3pie/issues/detail?id=95
http://sipi.usc.edu/database/?volume=misc

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Fig. 2.2: Warholized version of Lena

2.2. Programmer Documentation 69

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

GC3Libs provides services for submitting computational jobs to Grids and batch systems, controlling their execu-
tion, persisting job information, and retrieving the final output.

GC3Libs takes an application-oriented approach to batch computing. A generic Application class provides
the basic operations for controlling remote computations, but different Application subclasses can expose
adapted interfaces, focusing on the most relevant aspects of the application being represented.

class gc3libs.Application(arguments, inputs, outputs, output_dir, **extra_args)
Support for running a generic application with the GC3Libs. The following parameters are required to
create an Application instance:

arguments List or sequence of program arguments. The program to execute is the first one.; any object in
the list will be converted to string via Python’s str().

inputs Files that will be copied to the remote execution node before execution starts.

There are two possible ways of specifying the inputs parameter:

• It can be a Python dictionary: keys are local file paths or URLs, values are remote file names.

• It can be a Python list: each item in the list should be a pair (source, remote_file_name):
the source can be a local file or a URL; remote_file_name is the path (relative to the execu-
tion directory) where source will be downloaded. If remote_file_name is an absolute path, an
InvalidArgument error is raised.

A single string file_name is allowed instead of the pair and results in the local file file_name being
copied to file_name on the remote host.

outputs Files and directories that will be copied from the remote execution node back to the local computer
(or a network-accessible server) after execution has completed. Directories are copied recursively.

There are three possible ways of specifying the outputs parameter:

• It can be a Python dictionary: keys are remote file or directory paths (relative to the execution
directory), values are corresponding local names.

• It can be a Python list: each item in the list should be a pair (remote_file_name, destination):
the destination can be a local file or a URL; remote_file_name is the path (relative to the execu-
tion directory) that will be uploaded to destination. If remote_file_name is an absolute path, an
InvalidArgument error is raised.

A single string file_name is allowed instead of the pair and results in the remote file file_name
being copied to file_name on the local host.

• The constant gc3libs.ANY_OUTPUT which instructs GC3Libs to copy every file in the remote
execution directory back to the local output path (as specified by the output_dir attribute).

Note that no errors will be raised if an output file is not present. Override the terminated()method
to raise errors for reacting on this kind of failures.

output_dir Path to the base directory where output files will be downloaded. Output file names are inter-
preted relative to this base directory.

requested_cores,‘requested_memory‘,‘requested_walltime‘ specify resource requirements for the ap-
plication: * the number of independent execution units (CPU cores), * amount of memory (as a
gc3libs.quantity.Memory object), * amount of wall-clock time to allocate for the compu-
tational job

(as a gc3libs.quantity.Duration object).

The following optional parameters may be additionally specified as keyword arguments and will be given
special treatment by the Application class logic:

requested_architecture specify that this application can only be executed on a certain processor architec-
ture; see Run.Arch for a list of possible values. The default value None means that any architecture
is valid, i.e., there are no requirements on the processor architecture.

70 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

environment a dictionary defining environment variables and the values to give them in the task execution
setting. Keys of the dictionary are environmental variables names, and dictionary values define the
corresponding variable content. Both keys and values must be strings or convertible to string.

For example, to run the application in an environment where the variable LC_ALL has the value C and
the variable HZ has the value 100, one would use:

Application(...,
environment={'LC_ALL':'C', 'HZ':100},
...)

output_base_url if not None, this is prefixed to all output files (except stdout and stderr, which are always
retrieved), so, for instance, having output_base_url=”gsiftp://example.org/data” will upload output
files into that remote directory.

stdin file name of a file whose contents will be fed as standard input stream to the remote-executing process.

stdout name of a file where the standard output stream of the remote executing process will be redirected
to; will be automatically added to outputs.

stderr name of a file where the standard error stream of the remote executing process will be redirected to;
will be automatically added to outputs.

join if this evaluates to True, then standard error is redirected to the file specified by stdout and stderr is
ignored. (join has no effect if stdout is not given.)

tags list of tag names (string) that must be present on a resource in order to be eligible for submission.

Any other keyword arguments will be set as instance attributes, but otherwise ignored by the Application
constructor.

After successful construction, an Application object is guaranteed to have the following instance attributes:

arguments list of strings specifying command-line arguments for executable invocation. The first element
must be the executable.

inputs dictionary mapping source URL (a gc3libs.url.Url object) to a remote file name (a string);
remote file names are relative paths (root directory is the remote job folder)

outputs dictionary mapping remote file name (a string) to a destination (a gc3libs.url.Url); remote
file names are relative paths (root directory is the remote job folder)

output_dir Path to the base directory where output files will be downloaded. Output file names (those
which are not URLs) are interpreted relative to this base directory.

execution

a Run instance; its state attribute is initially set to NEW (Actually inherited from the Task)

environment dictionary mapping environment variable names to the requested value (string); possibly
empty

stdin None or a string specifying a (local) file name. If stdin is not None, then it matches a key name in
inputs

stdout None or a string specifying a (remote) file name. If stdout is not None, then it matches a key name
in outputs

stderr None or a string specifying a (remote) file name. If stdout is not None, then it matches a key name
in outputs

join boolean value, indicating whether stdout and stderr are collected into the same file

tags list of strings specifying the tags to request in each resource for submission; possibly empty.

application_name = ‘generic’
A name for applications of this class.

2.2. Programmer Documentation 71

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

This string is used as a prefix for configuration items related to this application in configured resources.
For example, if the application_name is foo, then the application interface code in GC3Pie might
search for foo_cmd, foo_extra_args, etc. See qsub_sge() for an actual example.

bsub(resource, _suppress_warning=False, **extra_args)
Get an LSF qsub command-line invocation for submitting an instance of this application. Return a
pair (cmd_argv, app_argv), where cmd_argv is a list containing the argv-vector of the command to
run to submit an instance of this application to the LSF batch system, and app_argv is the argv-vector
to use when invoking the application.

In the construction of the command-line invocation, one should assume that all the input files (as
named in Application.inputs) have been copied to the current working directory, and that output files
should be created in this same directory.

The default implementation just prefixes any output from the cmdline method with an LSF bsub
invocation of the form bsub -cwd . -L /bin/sh + resource limits.

Override this method in application-specific classes to provide appropriate invocation templates and/or
add resource-specific submission options.

cmdline(resource)
Return list of command-line arguments for invoking the application.

This is exactly the argv-vector of the application process: the application command name is included
as first item (index 0) of the list, further items are command-line arguments.

Hence, to get a UNIX shell command-line, just concatenate the elements of the list, separating them
with spaces.

compatible_resources(resources)
Return a list of compatible resources.

fetch_output(download_dir, overwrite, changed_only, **extra_args)
Call the corresponding method of the controller.

fetch_output_error(ex)
Invocation of Core.fetch_output() on this object failed; ex is the Exception that describes the error.

If this method returns an exception object, that is raised as a result of the Core.fetch_output(), otherwise
the return value is ignored and Core.fetch_output returns None.

Default is to return ex unchanged; override in derived classes to change this behavior.

qsub_pbs(resource, _suppress_warning=False, **extra_args)
Similar to qsub_sge(), but for the PBS/TORQUE resource manager.

qsub_sge(resource, **extra_args)
Get an SGE qsub command-line invocation for submitting an instance of this application.

Return a pair (cmd_argv, app_argv). Both cmd_argv and app_argv are argv-lists: the command name
is included as first item (index 0) of the list, further items are command-line arguments; cmd_argv is
the argv-list for the submission command (excluding the actual application command part); app_argv
is the argv-list for invoking the application. By overriding this method, one can add futher resource-
specific options at the end of the cmd_argv argv-list.

In the construction of the command-line invocation, one should assume that all the input files (as
named in Application.inputs) have been copied to the current working directory, and that output files
should be created in this same directory.

The default implementation just prefixes any output from the cmdline method with an SGE qsub in-
vocation of the form qsub -cwd -S /bin/sh + resource limits. Note that there is no generic way
of requesting a certain number of cores in SGE: it all depends on the installed parallel environment,
and these are totally under control of the local sysadmin; therefore, any request for cores is ignored
and a warning is logged.

Override this method in application-specific classes to provide appropriate invocation templates and/or
add different submission options.

72 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

rank_resources(resources)
Sort the given resources in order of preference.

By default, computational resource a is preferred over b if it has less queued jobs from the same user;
failing that, if it has more free slots; failing that, if it has less queued jobs (in total); finally, should all
preceding parameters compare equal, a is preferred over b if it has less running jobs from the same
user.

Resources where the job has already attempted to run (the resource front-end name is recorded in
.execution._execution_targets) are then moved to the back of the list, to avoid resubmitting to a faulty
resource.

sbatch(resource, **extra_args)
Get a SLURM sbatch command-line invocation for submitting an instance of this application.

Return a pair (cmd_argv, app_argv). Both cmd_argv and app_argv are argv-lists: the command name
is included as first item (index 0) of the list, further items are command-line arguments; cmd_argv is
the argv-list for the submission command (excluding the actual application command part); app_argv
is the argv-list for invoking the application. By overriding this method, one can add futher resource-
specific options at the end of the cmd_argv argv-list.

In the construction of the command-line invocation, one should assume that all the input files (as
named in Application.inputs) have been copied to the current working directory, and that output files
should be created in this same directory.

Override this method in application-specific classes to provide appropriate invocation templates and/or
add different submission options.

submit_error(exs)
Invocation of Core.submit() on this object failed; exs is a list of Exception objects, one for each at-
tempted submission.

If this method returns an exception object, that is raised as a result of the Core.submit(), otherwise the
return value is ignored and Core.submit returns None.

Default is to always return the first exception in the list (on the assumption that it is the root of all
exceptions or that at least it refers to the preferred resource). Override in derived classes to change this
behavior.

update_job_state_error(ex)
Handle exceptions that occurred during a Core.update_job_state call.

If this method returns an exception object, that exception is processed in Core.update_job_state()
instead of the original one. Any other return value is ignored and Core.update_job_state proceeds as
if no exception had happened.

Argument ex is the exception that was raised by the backend during job state update.

Default is to return ex unchanged; override in derived classes to change this behavior.

class gc3libs.Default
A namespace for all constants and default values used in the GC3Libs package.

class gc3libs.Run(initializer=None, attach=None, **keywd)
A specialized dict-like object that keeps information about the execution state of an Application instance.

A Run object is guaranteed to have the following attributes:

log A gc3libs.utils.History instance, recording human-readable text messages on events in this
job’s history.

info A simplified interface for reading/writing messages to Run.log. Reading from the info
attribute returns the last message appended to log. Writing into info appends a message to
log.

timestamp Dictionary, recording the most recent timestamp when a certain state was reached.
Timestamps are given as UNIX epochs.

2.2. Programmer Documentation 73

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

For properties state, signal and returncode, see the respective documentation.

Run objects support attribute lookup by both the [...] and the . syntax; see gc3libs.utils.Struct for
examples.

class Arch
Processor architectures, for use as values in the requested_architecture field of the Application class
constructor.

The following values are currently defined:

X86_64 64-bit Intel/AMD/VIA x86 processors in 64-bit mode.

X86_32 32-bit Intel/AMD/VIA x86 processors in 32-bit mode.

Run.exitcode
The “exit code” part of a Run.returncode, see os.WEXITSTATUS. This is an 8-bit integer, whose mean-
ing is entirely application-specific. (However, the value 255 is often used to mean that an error has
occurred and the application could not end its execution normally.)

Run.in_state(*names)
Return True if the Run state matches any of the given names.

In addition to the states from Run.State, the two additional names ok and failed are also ac-
cepted, with the following meaning:

•ok: state is TERMINATED and returncode is 0.

•failed: state is TERMINATED and returncode is non-zero.

Run.info
A simplified interface for reading/writing entries into history.

Setting the info attribute appends a message to the log:

>>> j1 = Run()
>>> j1.info = 'a message'
>>> j1.info = 'a second message'

Getting the value of the info attribute returns the last message entered in the log:

>>> j1.info
u'a second message ...'

Run.returncode
The returncode attribute of this job object encodes the Run termination status in a manner compatible
with the POSIX termination status as implemented by os.WIFSIGNALED and os.WIFEXITED.

However, in contrast with POSIX usage, the exitcode and the signal part can both be significant: in
case a Grid middleware error happened after the application has successfully completed its execution.
In other words, os.WEXITSTATUS(returncode) is meaningful iff os.WTERMSIG(returncode) is 0 or
one of the pseudo-signals listed in Run.Signals.

Run.exitcode and Run.signal are combined to form the return code 16-bit integer as follows (the con-
vention appears to be obeyed on every known system):

Bit Encodes...
0..7 signal number
8 1 if program dumped core.
9..16 exit code

Note: the “core dump bit” is always 0 here.

Setting the returncode property sets exitcode and signal; you can either assign a (signal, exitcode)
pair to returncode, or set returncode to an integer from which the correct exitcode and signal attribute
values are extracted:

74 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> j = Run()
>>> j.returncode = (42, 56)
>>> j.signal
42
>>> j.exitcode
56

>>> j.returncode = 137
>>> j.signal
9
>>> j.exitcode
0

See also Run.exitcode and Run.signal.

static Run.shellexit_to_returncode(rc)
Convert a shell exit code to a POSIX process return code.

A POSIX shell represents the return code of the last-run program within its exit code as follows:

•If the program was terminated by signal N, the shell exits with code 128+N,

•otherwise, if the program terminated with exit code C, the shell exits with code C.

Run.signal
The “signal number” part of a Run.returncode, see os.WTERMSIG for details.

The “signal number” is a 7-bit integer value in the range 0..127; value 0 is used to mean that no signal
has been received during the application runtime (i.e., the application terminated by calling exit()).

The value represents either a real UNIX system signal, or a “fake” one that GC3Libs uses to represent
Grid middleware errors (see Run.Signals).

Run.state
The state a Run is in.

The value of Run.state must always be a value from the Run.State enumeration, i.e., one of the follow-
ing values.

+—————+————————————————————–+—————
——-+ # noqa |Run.State value|purpose |can change to | # noqa
+===============+==+======================+
noqa |NEW |Job has not yet been submitted/started (i.e., gsub not called)|SUBMITTED (by
gsub) | # noqa +—————+————————————————————–+——————
—-+ # noqa |SUBMITTED |Job has been sent to execution resource |RUNNING, STOPPED
| # noqa +—————+————————————————————–+———————-+ #
noqa |STOPPED |Trap state: job needs manual intervention (either user- |TERMINATING(by
gkill),| # noqa | |or sysadmin-level) to resume normal execution |SUBMITTED (by miracle)| #
noqa +—————+————————————————————–+———————-+ # noqa
|RUNNING |Job is executing on remote resource |TERMINATING | # noqa +—————+——
——————————————————–+———————-+ # noqa |TERMINATING |Job
has finished execution on remote resource; |TERMINATED | # noqa | |output not yet retrieved | | #
noqa +—————+————————————————————–+———————-+ # noqa
|TERMINATED |Job execution is finished (correctly or not) |None: final state | # noqa | |and will not
be resumed; output has been retrieved | | # noqa +—————+———————————————
—————–+———————-+ # noqa

When a Run object is first created, it is assigned the state NEW. After a successful invocation
of Core.submit(), it is transitioned to state SUBMITTED. Further transitions to RUNNING or
STOPPED or TERMINATED state, happen completely independently of the creator progra; the
Core.update_job_state() call provides updates on the status of a job.

The STOPPED state is a kind of generic “run time error” state: a job can get into the STOPPED state
if its execution is stopped (e.g., a SIGSTOP is sent to the remote process) or delayed indefinitely (e.g.,
the remote batch system puts the job “on hold”). There is no way a job can get out of the STOPPED

2.2. Programmer Documentation 75

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

state automatically: all transitions from the STOPPED state require manual intervention, either by the
submitting user (e.g., cancel the job), or by the remote systems administrator (e.g., by releasing the
hold).

The TERMINATED state is the final state of a job: once a job reaches it, it cannot get back to any other
state. Jobs reach TERMINATED state regardless of their exit code, or even if a system failure occurred
during remote execution; actually, jobs can reach the TERMINATED status even if they didn’t run at
all, for example, in case of a fatal failure during the submission step.

class gc3libs.Task(**extra_args)
Mix-in class implementing a facade for job control.

A Task can be described as an “active” job, in the sense that all job control is done through methods on the
Task instance itself; contrast this with operating on Application objects through a Core or Engine instance.

The following pseudo-code is an example of the usage of the Task interface for controlling a job. Assume
that GamessApplication is inheriting from Task (it actually is):

t = GamessApplication(input_file)
t.submit()
... do other stuff
t.update_state()
... take decisions based on t.execution.state
t.wait() # blocks until task is terminated

Each Task object has an execution attribute: it is an instance of class Run, initialized with a new instance
of Run, and at any given time it reflects the current status of the associated remote job. In particular,
execution.state can be checked for the current task status.

After successful initialization, a Task instance will have the following attributes:

changed evaluates to True if the Task has been changed since last time it has been saved to persistent storage
(see gclibs.persistence)

execution a Run instance; its state attribute is initially set to NEW.

attach(controller)
Use the given Grid interface for operations on the job associated with this task.

detach()
Remove any reference to the current grid interface. After this, calling any method other than
attach() results in an exception TaskDetachedFromGridError being thrown.

fetch_output(output_dir=None, overwrite=False, changed_only=True, **extra_args)
Retrieve the outputs of the computational job associated with this task into directory output_dir, or, if
that is None, into the directory whose path is stored in instance attribute .output_dir.

If the execution state is TERMINATING, transition the state to TERMINATED (which runs the appro-
priate hook).

See gc3libs.Core.fetch_output() for a full explanation.

Returns Path to the directory where the job output has been collected.

free(**extra_args)
Release any remote resources associated with this task.

See gc3libs.Core.free() for a full explanation.

kill(**extra_args)
Terminate the computational job associated with this task.

See gc3libs.Core.kill() for a full explanation.

new()
Called when the job state is (re)set to NEW.

Note this will not be called when the application object is created, rather if the state is reset to NEW
after it has already been submitted.

76 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The default implementation does nothing, override in derived classes to implement additional behavior.

peek(what=’stdout’, offset=0, size=None, **extra_args)
Download size bytes (at offset offset from the start) from the associated job standard output or error
stream, and write them into a local file. Return a file-like object from which the downloaded contents
can be read.

See gc3libs.Core.peek() for a full explanation.

progress()
Advance the associated job through all states of a regular lifecycle. In detail:

1.If execution.state is NEW, the associated job is started.

2.The state is updated until it reaches TERMINATED

3.Output is collected and the final returncode is returned.

An exception TaskError is raised if the job hits state STOPPED or UNKNOWN during an update in
phase 2.

When the job reaches TERMINATING state, the output is retrieved; if this operation is successfull,
state is advanced to TERMINATED.

Once the job reaches TERMINATED state, the return code (stored also in .returncode) is returned; if
the job is not yet in TERMINATED state, calling progress returns None.

Raises exception UnexpectedStateError if the associated job goes into state
STOPPED or UNKNOWN

Returns final returncode, or None if the execution state is not TERMINATED.

running()
Called when the job state transitions to RUNNING, i.e., the job has been successfully started on a
(possibly) remote resource.

The default implementation does nothing, override in derived classes to implement additional behavior.

stopped()
Called when the job state transitions to STOPPED, i.e., the job has been remotely suspended for an
unknown reason and cannot automatically resume execution.

The default implementation does nothing, override in derived classes to implement additional behavior.

submit(resubmit=False, targets=None, **extra_args)
Start the computational job associated with this Task instance.

submitted()
Called when the job state transitions to SUBMITTED, i.e., the job has been successfully sent to a
(possibly) remote execution resource and is now waiting to be scheduled.

The default implementation does nothing, override in derived classes to implement additional behavior.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with what-
ever exit status, see returncode) and the final output has been retrieved.

The location where the final output has been stored is available in attribute self.output_dir.

The default implementation does nothing, override in derived classes to implement additional behavior.

terminating()
Called when the job state transitions to TERMINATING, i.e., the remote job has finished execution
(with whatever exit status, see returncode) but output has not yet been retrieved.

The default implementation does nothing, override in derived classes to implement additional behavior.

unknown()
Called when the job state transitions to UNKNOWN, i.e., the job has not been updated for a certain
period of time thus it is placed in UNKNOWN state.

2.2. Programmer Documentation 77

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Two possible ways of changing from this state: 1) next update cycle, job status is updated from the
remote server 2) derive this method for Application specific logic to deal with this case

The default implementation does nothing, override in derived classes to implement additional behavior.

update_state(**extra_args)
In-place update of the execution state of the computational job associated with this Task. After suc-
cessful completion, .execution.state will contain the new state.

After the job has reached the TERMINATING state, the following attributes are also set:

execution.duration Time lapse from start to end of the job at the remote execution site, as a
gc3libs.quantity.Duration value. (This is also often referred to as the ‘wall-clock
time’ or walltime of the job.)

execution.max_used_memory Maximum amount of RAM used during job execution, represented as
a gc3libs.quantity.Memory value.

execution.used_cpu_time Total time (as a gc3libs.quantity.Duration value) that the pro-
cessors has been actively executing the job’s code.

The execution backend may set additional attributes; the exact name and format of these additional
attributes is backend-specific. However, you can easily identify the backend-specific attributes because
their name is prefixed with the (lowercased) backend name; for instance, the PbsLrms backend sets
attributes pbs_queue, pbs_end_time, etc.

wait(interval=60)
Block until the associated job has reached TERMINATED state, then return the job’s return code. Note
that this does not automatically fetch the output.

Parameters interval (integer) – Poll job state every this number of seconds

gc3libs.configure_logger(level=40, name=None, format=’sphinx-build: [%(asctime)s]
%(levelname)-8s: %(message)s’, datefmt=’%Y-%m-%d
%H:%M:%S’)

Configure the gc3.gc3libs logger.

Arguments level, format and datefmt set the corresponding arguments in the logging.basicConfig() call.

If a user configuration file exists in file NAME.log.conf in the Default.RCDIR directory (usually
~/.gc3), it is read and used for more advanced configuration; if it does not exist, then a sample one is
created.

gc3libs.create_engine(*conf_files, **extra_args)
Returns a gc3libs.core.Engine class.

It accepts an optional list of configuration filenames. If the filenames contain a ~ or a variable name, it will
be expanded automatically.

Called without arguments, a configuration file will be searched in ~/.gc3/gc3pie.conf and used, if found .

gc3libs.error_ignored(*ctx)
Return True if no object in list ctx matches the contents of the GC3PIE_NO_CATCH_ERRORS environ-
ment variable.

Note that the list of un-ignored errors is determined when the gc3libs module is initially loaded and is thus
insensitive to changes in the environment that happen afterwards.

The calling interface is so designed, that a list of keywords describing -or related- to the error are passed;
if any of them has been mentioned in the environment variable GC3PIE_NO_CATCH_ERRORS then this
function returns False – i.e., the error is never ignored by GC3Pie and always propagated to the top-level
handler.

gc3libs.application

Support for running a generic application with the GC3Libs.

78 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.application.apppot

Support for AppPot-hosted applications.

For more details about AppPot, visit: <http://apppot.googlecode.com>

class gc3libs.application.apppot.AppPotApplication(arguments, inputs, outputs, out-
put_dir, apppot_img=None,
apppot_changes=None,
apppot_tag=’ENV/APPPOT-
0.21’, apppot_extra=[], **ex-
tra_args)

Base class for AppPot-hosted applications. Provides the same interface as the base Application and
runs the specified command in an AppPot instance.

In addition to the standard Application keyword arguments, the following ones can be given to steer
the AppPot execution:

•apppot_img: Path or URL to the AppPot system image to use. If None (default), then the default
AppPot system image on the remote system is used.

•apppot_changes: Path or URL to an AppPot changes file to be merged at system startup.

•apppot_tag: ARC RTE to use for submission of this AppPot job.

•apppot_extra: List of additional UML boot command-line arguments. (Passed to the AppPot instance
via apppot-start‘s --extra option.)

gc3libs.application.codeml

Simple interface to the CODEML application.

class gc3libs.application.codeml.CodemlApplication(*ctls, **extra_args)
Run a CODEML job with the specified ‘.ctl’ files.

The given ‘.ctl’ input files are parsed and the ‘.phy’ and ‘.nwk’ files mentioned therein are added to the list
of files to be copied to the execution site.

static aux_files(ctl_path)
Return full path to the seqfile and treefile referenced in the ‘.ctl’ file given as arguments.

terminated()
Set the exit code of a CodemlApplication job by inspecting its .mlc output files.

An output file is valid iff its last line of each output file reads Time used: MM:SS or Time
used: HH:MM:SS

The exit status of the whole job is a bit field composed as follows:

bit no. meaning
0 H1.mlc valid (0=valid, 1=invalid)
1 H1.mlc present (0=present, 1=no file)
2 H0.mlc valid (0=valid, 1=invalid)
3 H0.mlc present (0=present, 1=not present)
7 error running codeml (1=error, 0=ok)

The special value 127 is returned in case codeml did not run at all (Grid or remote cluster error).

So, exit code 0 means that all files processed successfully, code 1 means that H0.mlc has not been
downloaded (for whatever reason).

TODO:

• Check if the stderr is empty.

2.2. Programmer Documentation 79

http://apppot.googlecode.com

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.application.demo

Specialized support for computational jobs running simple demo.

class gc3libs.application.demo.Square(x)
Square class, takes a filename containing a list of integer to be squared. writes an output containing the
square of each of them

gc3libs.application.gamess

Specialized support for computational jobs running GAMESS-US.

class gc3libs.application.gamess.GamessAppPotApplication(inp_file_path,
*other_input_files,
**extra_args)

Specialized AppPotApplication object to submit computational jobs running GAMESS-US.

This class makes no check or guarantee that a GAMESS-US executable will be available in the executing
AppPot instance: the apppot_img and apppot_tag keyword arguments can be used to select the AppPot
system image to run this application; see the AppPotApplication for information.

The __init__ construction interface is compatible with the one used in GamessApplication. The only
required parameter for construction is the input file name; any other argument names an additional input
file, that is added to the Application.inputs list, but not otherwise treated specially.

Any other keyword parameter that is valid in the Application class can be used here as well, with the
exception of input and output. Note that a GAMESS-US job is always submitted with join = True, therefore
any stderr setting is ignored.

class gc3libs.application.gamess.GamessApplication(inp_file_path, *other_input_files,
**extra_args)

Specialized Application object to submit computational jobs running GAMESS-US.

The only required parameter for construction is the input file name; subsequent positional arguments are
additional input files, that are added to the Application.inputs list, but not otherwise treated specially.

The verno parameter is used to request a specific version of GAMESS-US; if the default value None is
used, the default version of GAMESS-US at the executing site is run.

Any other keyword parameter that is valid in the Application class can be used here as well, with the
exception of input and output. Note that a GAMESS-US job is always submitted with join = True, therefore
any stderr setting is ignored.

terminated()
Append to log the termination status line as extracted from the GAMESS ‘.out’ file.

The job exit code .execution.exitcode is (re)set according to the following table:

Exit code Meaning
0 the output file contains the string EXECUTION OF GAMESS

TERMINATED normally
1 the output file contains the string EXECUTION OF GAMESS

TERMINATED -ABNORMALLY-
2 the output file contains the string ddikick exited unexpectedly
70
(os.EX_SOFTWARE)

the output file cannot be read or does not match any of the above patterns

gc3libs.application.rosetta

Specialized support for computational jobs running programs in the Rosetta suite.

80 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

class gc3libs.application.rosetta.RosettaApplication(application, applica-
tion_release, inputs, out-
puts=[], flags_file=None,
database=None, argu-
ments=[], **extra_args)

Specialized Application object to submit one run of a single application in the Rosetta suite.

Required parameters for construction:

•application: name of the Rosetta application to call (e.g., “docking_protocol” or “relax”)

•inputs: a dict instance, keys are Rosetta -in:file:* options, values are the (local) path names of
the corresponding files. (Example: inputs={"-in:file:s":"1brs.pdb"})

•outputs: list of output file names to fetch after Rosetta has finished running.

Optional parameters:

•flags_file: path to a local file containing additional flags for controlling Rosetta invocation; if None, a
local configuration file will be used.

•database: (local) path to the Rosetta DB; if this is not specified, then it is assumed that the correct loca-
tion will be available at the remote execution site as environment variable ROSETTA_DB_LOCATION

•arguments: If present, they will be appended to the Rosetta application command line.

terminated()
Extract output files from the tar archive created by the ‘rosetta.sh’ script.

class gc3libs.application.rosetta.RosettaDockingApplication(pdb_file_path, na-
tive_file_path=None,
num-
ber_of_decoys_to_create=1,
flags_file=None,
applica-
tion_release=‘3.1’,
**extra_args)

Specialized Application class for executing a single run of the Rosetta “docking_protocol” application.

Currently used in the gdocking app.

gc3libs.application.turbomole

Specialized support for TurboMol.

class gc3libs.application.turbomole.TurbomoleApplication(program, control, *oth-
ers, **extra_args)

Run TURBOMOLE’s program on the given control file. Any additional arguments are considered additional
filenames to input files (e.g., the coord file) and copied to the execution directory.

Parameters

• program (str) – Name of the TURBOMOLE’s program to run (e.g., ridft)

• control (str) – Path to a file in TURBOMOLE’s control format.

• others – Path(s) to additional input files.

class gc3libs.application.turbomole.TurbomoleDefineApplication(program,
define_in, co-
ord, *others,
**extra_args)

Run TURBOMOLE’s ‘define’ with the given define_in file as input, then run program on the control file
produced.

Any additional arguments are considered additional filenames to input files and copied to the execution
directory.

2.2. Programmer Documentation 81

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Parameters

• program (str) – Name of the TURBOMOLE’s program to run (e.g., ridft)

• define_in (str) – Path to a file containing keystrokes to pass

as input to the ‘define’ program.

Parameters coord (str) – Path to a file containing the molecule

coordinates in TURBOMOLE’s format.

Parameters others – Path(s) to additional input files.

gc3libs.authentication

Authentication support for the GC3Libs.

class gc3libs.authentication.Auth(config, auto_enable)
A mish-mash of authorization functions.

This class actually serves the purposes of:

•a registry of authorization ‘types’, mapping internally-assigned names to Python classes;

•storage for the configuration information (which can be arbitrary, but should probably be read off a
configuration file);

•a factory, returning a ‘SomeAuth’ object through which clients can deal with actual authorization
issues (like checking if the authorization credentials are valid and getting/renewing them).

•a cache, that tries to avoid expensive re-initializations of Auth objects by allowing only one live in-
stance per type, and returning it when requested.

FIXME
There are several problems with this approach:

•the configuration is assumed static and cannot be changed after the Auth instance is constructed.

•there is no communication between the client class and the Auth classes.

•there is no control over the lifetime of the cache; at a minimum, it should be settable per-auth-type.

•I’m unsure whether the mapping of ‘type names’ (as in the type=... keyword in the config file) to
Python classes belongs in a generic factory method or in the configuration file reader. (Probably the
former, so the code here would actually be right.)

•The whole auto_enable stuff really belongs to the user-interface part, which is also hard-coded in the
auth classes, and should not be.

add_params(**params)
Add the specified keyword arguments as initialization parameters to all the configured auth classes.

Parameters that have already been specified are silently overwritten.

get(auth_name, **kwargs)
Return an instance of the Auth class corresponding to the given auth_name, or raise an exception if
instanciating the same class has given an unrecoverable exception in past calls.

Additional keyword arguments are passed unchanged to the class constructor and can override values
specified at configuration time.

Instances are remembered for the lifetime of the program; if an instance of the given class is already
present in the cache, that one is returned; otherwise, an instance is contructed with the given parame-
ters.

82 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Caution: The params keyword arguments are only used if a new instance is constructed and are
silently ignored if the cached instance is returned.

class gc3libs.authentication.NoneAuth(**auth)
Auth proxy to use when no auth is needed.

gc3libs.authentication.grid

gc3libs.authentication.ssh

Authentication support for accessing resources through the SSH protocol.

gc3libs.backends

Interface to different resource management systems for the GC3Libs.

class gc3libs.backends.LRMS(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth=None, **extra_args)

Base class for interfacing with a computing resource.

The following construction parameters are also set as instance attributes. All of them are mandatory, except
auth.

Attribute
name

Ex-
pected
Type

Meaning

name string A unique identifier for this resource, used for generating error message.
architec-
ture

set of
Run.Arch
values

Should contain one entry per each architecture supported. Valid architecture
values are constants in the gc3libs.Run.Arch class.

auth string A gc3libs.authentication.Auth instance that will be used to access the
computational resource associated with this backend. The default value
None is used to mean that no authentication credentials are needed (e.g.,
access to the resource has been pre-authenticated) or is managed outside of
GC3Pie).

max_cores int Maximum number of CPU cores that GC3Pie can allocate on this resource.
max_cores_per_jobint Maximum number of CPU cores that GC3Pie can allocate on this resource

for a single job.
max_memory_per_coreMemory Maximum memory that GC3Pie can allocate to jobs on this resource. The

value is per core, so the actual amount allocated to a single job is the value
of this entry multiplied by the number of cores requested by the job.

max_walltimeDuration Maximum wall-clock time that can be allotted to a single job running on this
resource.

The above should be considered immutable attributes: they are specified at construction time and changed
never after.

The following attributes are instead dynamically provided (i.e., defined by the get_resource_status() method
or similar), thus can change over the lifetime of the object:

Attribute name Type
free_slots int
user_run int
user_queued int
queued int

static authenticated(fn)
Decorator: mark a function as requiring authentication.

2.2. Programmer Documentation 83

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Each invocation of the decorated function causes a call to the get method of the authentication object
(configured with the auth parameter to the class constructor).

cancel_job(app)
Cancel a running job. If app is associated to a queued or running remote job, tell the execution
middleware to cancel it.

close()
Implement gracefully close on LRMS dependent resources e.g. transport

free(app)
Free up any remote resources used for the execution of app. In particular, this should delete any remote
directories and files.

Call this method when app.execution.state is anything other than TERMINATED results in undefined
behavior and will likely be the cause of errors later on. Be cautious.

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Re-
source object.

get_results(job, download_dir, overwrite=False, changed_only=True)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or
subdirectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

•if changed_only is True (default), then only files for which the source has a different size or has
been modified more recently than the destination are copied;

•if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those
files such that the source is newer or different in size than the destination.

peek(app, remote_filename, local_file, offset=0, size=None)
Download size bytes (at offset offset from the start) from remote file remote_filename and write them
into local_file. If size is None (default), then snarf contents of remote file from offset unto the end.

First argument remote_filename is the path to a file relative to the remote job “sandbox”.

Argument local_file is either a local path name (string), or a file-like object supporting a .write()
method. If local_file is a path name, it is created if not existent, otherwise overwritten. In any case,
upon exit from this procedure, the stream will be positioned just after the written bytes.

Fourth optional argument offset is the offset from the start of the file. If offset is negative, it is inter-
preted as an offset from the end of the remote file.

Any exception raised by operations will be re-raised to the caller.

submit_job(application, job)
Submit an Application instance to the configured computational resource; return a gc3libs.Job instance
for controlling the submitted job.

84 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

This method only returns if the job is successfully submitted; upon any failure, an exception is raised.

Note:

1.job.state is not altered; it is the caller’s responsibility to update it.

2.the job object may be updated with any information that is necessary for this LRMS to perform
further operations on it.

update_job_state(app)
Query the state of the remote job associated with app and update app.execution.state accordingly.
Return the corresponding Run.State; see Run.State for more details.

validate_data(data_file_list=None)
Return True if the list of files is expressed in one of the file transfer protocols the LRMS supports.

Return False otherwise.

gc3libs.backends.arc0

gc3libs.backends.arc1

gc3libs.backends.batch

This module provides a generic BatchSystem class from which all batch-like backends should inherit.

class gc3libs.backends.batch.BatchSystem(name, architecture, max_cores,
max_cores_per_job, max_memory_per_core,
max_walltime, auth, frontend, transport,
accounting_delay=15, ssh_config=None,
keyfile=None, ignore_ssh_host_keys=False,
ssh_timeout=None, **extra_args)

Base class for backends dealing with a batch-queue system (e.g., PBS/TORQUE, Grid Engine, etc.)

This is an abstract class, that you should subclass in order to interface with a given batch queuing system.
(Remember to call this class’ constructor in the derived class __init__ method.)

cancel_job(*args, **kwargs)
Cancel a running job. If app is associated to a queued or running remote job, tell the execution
middleware to cancel it.

close(*args, **kwargs)
Return True if the list of files is expressed in one of the file transfer protocols the LRMS supports.

Return False otherwise.

free(*args, **kwargs)
Free up any remote resources used for the execution of app. In particular, this should delete any remote
directories and files.

Call this method when app.execution.state is anything other than TERMINATED results in undefined
behavior and will likely be the cause of errors later on. Be cautious.

get_epilogue_script(app)
This method will get the epilogue script(s) for the app application and will return a string which
contains the contents of the script(s) merged together.

get_jobid_from_submit_output(output, regexp)
Parse the output of the submission command. Regexp is provided by the caller.

get_prologue_script(app)
This method will get the prologue script(s) for the app application and will return a string which
contains the contents of the script(s) merged together.

2.2. Programmer Documentation 85

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

get_results(*args, **kwargs)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or
subdirectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

•if changed_only is True (default), then only files for which the source has a different size or has
been modified more recently than the destination are copied;

•if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those
files such that the source is newer or different in size than the destination.

peek(*args, **kwargs)
Download size bytes (at offset offset from the start) from remote file remote_filename and write them
into local_file. If size is None (default), then snarf contents of remote file from offset unto the end.

First argument remote_filename is the path to a file relative to the remote job “sandbox”.

Argument local_file is either a local path name (string), or a file-like object supporting a .write()
method. If local_file is a path name, it is created if not existent, otherwise overwritten. In any case,
upon exit from this procedure, the stream will be positioned just after the written bytes.

Fourth optional argument offset is the offset from the start of the file. If offset is negative, it is inter-
preted as an offset from the end of the remote file.

Any exception raised by operations will be re-raised to the caller.

submit_job(*args, **kwargs)
This method will create a remote directory to store job’s sandbox, and will copy the sandbox in there.

update_job_state(*args, **kwargs)
Query the state of the remote job associated with app and update app.execution.state accordingly.
Return the corresponding Run.State; see Run.State for more details.

validate_data(data_file_list)
Return True if the list of files is expressed in one of the file transfer protocols the LRMS supports.

Return False otherwise.

gc3libs.backends.batch.generic_filename_mapping(jobname, jobid, file_name)
Map STDOUT/STDERR filenames (as recorded in Application.outputs) to commonly used default STD-
OUT/STDERR file names (e.g., <jobname>.o<jobid>).

gc3libs.backends.lsf

Job control on SGE clusters (possibly connecting to the front-end via SSH).

86 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

class gc3libs.backends.lsf.LsfLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, frontend,
transport, lsf_continuation_line_prefix_length=None,
**extra_args)

Job control on LSF clusters (possibly by connecting via SSH to a submit node).

get_resource_status(obj, *args)
Get dynamic information out of the LSF subsystem.

return self

dynamic information required (at least those): total_queued free_slots user_running user_queued

gc3libs.backends.pbs

Job control on PBS/Torque clusters (possibly connecting to the front-end via SSH).

class gc3libs.backends.pbs.PbsLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, frontend,
transport, queue=None, **extra_args)

Job control on PBS/Torque clusters (possibly by connecting via SSH to a submit node).

get_resource_status(*args, **kwargs)
Update the status of the resource associated with this LRMS instance in-place. Return updated Re-
source object.

gc3libs.backends.pbs.count_jobs(qstat_output, whoami)
Parse PBS/Torque’s qstat output (as contained in string qstat_output) and return a quadruple (R, Q, r, q)
where:

•R is the total number of running jobs in the PBS/Torque cell (from any user);

•Q is the total number of queued jobs in the PBS/Torque cell (from any user);

•r is the number of running jobs submitted by user whoami;

•q is the number of queued jobs submitted by user whoami

gc3libs.backends.sge

Job control on SGE clusters (possibly connecting to the front-end via SSH).

class gc3libs.backends.sge.SgeLrms(name, architecture, max_cores, max_cores_per_job,
max_memory_per_core, max_walltime, auth, frontend,
transport, default_pe=None, **extra_args)

Job control on SGE clusters (possibly by connecting via SSH to a submit node).

get_resource_status(*args, **kwargs)
Update the status of the resource associated with this LRMS instance in-place. Return updated Re-
source object.

gc3libs.backends.sge.compute_nr_of_slots(qstat_output)
Compute the number of total, free, and used/reserved slots from the output of SGE’s qstat -F.

Return a dictionary instance, mapping each host name into a dictionary instance, mapping the strings
total, available, and unavailable to (respectively) the the total number of slots on the host,
the number of free slots on the host, and the number of used+reserved slots on the host.

Cluster-wide totals are associated with key global.

Note: The ‘available slots’ computation carried out by this function is unreliable: there is indeed no notion
of a ‘global’ or even ‘per-host’ number of ‘free’ slots in SGE. Slot numbers can be computed per-queue,
but a host can belong in different queues at the same time; therefore the number of ‘free’ slots available to a
job actually depends on the queue it is submitted to. Since SGE does not force users to submit explicitly to

2.2. Programmer Documentation 87

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

a queue, rather encourages use of a sort of ‘implicit’ routing queue, there is no way to compute the number
of free slots, as this entirely depends on how local policies will map a job to the available queues.

gc3libs.backends.sge.count_jobs(qstat_output, whoami)
Parse SGE’s qstat output (as contained in string qstat_output) and return a quadruple (R, Q, r, q) where:

•R is the total number of running jobs in the SGE cell (from any user);

•Q is the total number of queued jobs in the SGE cell (from any user);

•r is the number of running jobs submitted by user whoami;

•q is the number of queued jobs submitted by user whoami

gc3libs.backends.sge.parse_qhost_f(qhost_output)
Parse SGE’s qhost -F output (as contained in string qhost_output) and return a dict instance, mapping
each host name to its attributes.

gc3libs.backends.sge.parse_qstat_f(qstat_output)
Parse SGE’s qstat -F output (as contained in string qstat_output) and return a dict instance, mapping
each queue name to its attributes.

gc3libs.backends.shellcmd

Run applications as local processes.

class gc3libs.backends.shellcmd.ShellcmdLrms(name, architecture,
max_cores, max_cores_per_job,
max_memory_per_core, max_walltime,
auth=None, frontend=’localhost’,
transport=’local’, time_cmd=None,
override=’False’, spooldir=None, re-
sourcedir=None, ssh_config=None, key-
file=None, ignore_ssh_host_keys=False,
ssh_timeout=None, **extra_args)

Execute an Application instance as a local process.

Construction of an instance of ShellcmdLrms takes the following optional parameters (in addition to any
parameters taken by the base class LRMS):

Parameters

• time_cmd (str) – Path to the GNU time command. Default is /usr/bin/time
which is correct on all known Linux distributions.

This backend uses many of the extended features of GNU time, so the shell-builtins or
the BSD time will not work.

• spooldir (str) – Path to a filesystem location where to create temporary working
directories for processes executed through this backend. The default value None means
to use $TMPDIR or /var/tmp (see tempfile.mkftemp for details).

• resourcedir (str) – Path to a filesystem location where to create a temporary direc-
tory that will contain information on the jobs running on the machine. The default value
None means to use $HOME/.gc3/shellcmd.d.

• transport (str) – Transport to use to connecet to the resource. Valid values are ssh
or local.

• frontend (str) – If transport is ssh, then frontend is the hostname of the remote
machine where the jobs will be executed.

• ignore_ssh_host_key (bool) – When connecting to a remote resource using ssh
the server ssh public key is usually checked against a database of known hosts, and if
the key is found but it does not match with the one saved in the database the connection
will fail. Setting ignore_ssh_host_key to True will disable this check, thus introducing

88 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

a potential security issue, but allowing connection even though the database contain
old/invalid keys (the use case is when connecting to VM on a cloud, since the IP is
usually reused and therefore the ssh key is recreated).

• override (bool) – ShellcmdLrms by default will try to gather information on the
machine the resource is running on, including the number of cores and the available
memory. These values may be different from the values stored in the configuration file.
If override is True, then the values automatically discovered will be used instead of the
ones in the configuration file. If override is False, instead, the values in the configuration
file will be used.

• ssh_timeout (int) – If transport is ssh, this value will be used as timeout (in seconds)
for the TCP connect.

cancel_job(app)
Cancel a running job. If app is associated to a queued or running remote job, tell the execution
middleware to cancel it.

close()
Implement gracefully close on LRMS dependent resources e.g. transport

free(app)
Delete the temporary directory where a child process has run. The temporary directory is removed
with all its content, recursively.

If the deletion is successful, the lrms_execdir attribute in app.execution is reset to None; subsequent
invocations of this method on the same applications do nothing.

free_slots
Returns the number of cores free

get_resource_status()
Update the status of the resource associated with this LRMS instance in-place. Return updated Re-
source object.

get_results(app, download_dir, overwrite=False, changed_only=True)
Retrieve job output files into local directory download_dir.

Directory download_dir must already exists.

If optional 3rd argument overwrite is False (default), then existing files within download_dir (or
subdirectories thereof) will not be altered in any way.

If overwrite is instead True, then the (optional) 4th argument changed_only determines what files are
overwritten:

•if changed_only is True (default), then only files for which the source has a different size or has
been modified more recently than the destination are copied;

•if changed_only is False, then all files in source will be copied into destination, unconditionally.

Output files that do not exist in download_dir will be copied, independently of the overwrite and
changed_only settings.

Parameters

• job (Task) – the Task instance whose output should be retrieved

• download_dir (str) – path to download files into

• overwrite (bool) – if False, do not download files that already exist

• changed_only (bool) – if both this and overwrite are True, only overwrite those
files such that the source is newer or different in size than the destination.

peek(app, remote_filename, local_file, offset=0, size=None)
Download size bytes (at offset offset from the start) from remote file remote_filename and write them
into local_file. If size is None (default), then snarf contents of remote file from offset unto the end.

2.2. Programmer Documentation 89

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

First argument remote_filename is the path to a file relative to the remote job “sandbox”.

Argument local_file is either a local path name (string), or a file-like object supporting a .write()
method. If local_file is a path name, it is created if not existent, otherwise overwritten. In any case,
upon exit from this procedure, the stream will be positioned just after the written bytes.

Fourth optional argument offset is the offset from the start of the file. If offset is negative, it is inter-
preted as an offset from the end of the remote file.

Any exception raised by operations will be re-raised to the caller.

submit_job(app)
Run an Application instance as a local process.

See LRMS.submit_job

update_job_state(app)
Query the running status of the local process whose PID is stored into app.execution.lrms_jobid, and
map the POSIX process status to GC3Libs Run.State.

validate_data(data_file_list=[])
Return False if any of the URLs in data_file_list cannot be handled by this backend.

The shellcmd backend can only handle file URLs.

gc3libs.backends.slurm

Job control on SLURM clusters (possibly connecting to the front-end via SSH).

class gc3libs.backends.slurm.SlurmLrms(name, architecture, max_cores,
max_cores_per_job, max_memory_per_core,
max_walltime, auth, frontend, transport, **ex-
tra_args)

Job control on SLURM clusters (possibly by connecting via SSH to a submit node).

get_resource_status(*args, **kwargs)
Update the status of the resource associated with this LRMS instance in-place. Return updated Re-
source object.

gc3libs.backends.slurm.count_jobs(squeue_output, whoami)
Parse SLURM’s squeue output and return a quadruple (R, Q, r, q) where:

•R is the total number of running jobs (from any user);

•Q is the total number of queued jobs (from any user);

•r is the number of running jobs submitted by user whoami;

•q is the number of queued jobs submitted by user whoami

The squeue_output must contain the results of an invocation of squeue --noheader
--format=’%i^%T^%u^%U^%r^%R’.

gc3libs.backends.transport

The Transport class hierarchy provides an abstraction layer to execute commands and copy/move files irrespective
of whether the destination is the local computer or a remote front-end that we access via SSH.

gc3libs.cmdline

Prototype classes for GC3Libs-based scripts.

Classes implemented in this file provide common and recurring functionality for GC3Libs command-line utilities
and scripts. User applications should implement their specific behavior by subclassing and overriding a few
customization methods.

90 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

There are currently two public classes provided here:

GC3UtilsScript Base class for all the GC3Utils commands. Implements a few methods useful for writing
command-line scripts that operate on jobs by ID.

SessionBasedScript Base class for the grosetta/ggamess/gcodeml scripts. Implements a long-
running script to submit and manage a large number of jobs grouped into a “session”.

class gc3libs.cmdline.GC3UtilsScript(**extra_args)
Base class for GC3Utils scripts.

The default command line implemented is the following:

script [options] JOBID [JOBID ...]

By default, only the standard options -h/--help and -V/--version are considered; to add more, over-
ride setup_options() To change default positional argument parsing, override setup_args()

pre_run()
Perform parsing of standard command-line options and call into parse_args() to do non-optional ar-
gument processing.

setup()
Setup standard command-line parsing.

GC3Utils scripts should probably override setup_args() and setup_options() to modify
command-line parsing.

setup_args()
Set up command-line argument parsing.

The default command line parsing considers every argument as a job ID; actual processing of the IDs
is done in parse_args()

class gc3libs.cmdline.SessionBasedScript(**extra_args)
Base class for grosetta/ggamess/gcodeml and like scripts. Implements a long-running script to sub-
mit and manage a large number of jobs grouped into a “session”.

The generic scripts implements a command-line like the following:

PROG [options] INPUT [INPUT ...]

First, the script builds a list of input files by recursively scanning each of the given INPUT arguments for
files matching the self.input_file_pattern glob string (you can set it via a keyword argument to the ctor). To
perform a different treatment of the command-line arguments, override the process_args() method.

Then, new jobs are added to the session, based on the results of the process_args() method above. For
each tuple of items returned by process_args(), an instance of class self.application (which you can set by a
keyword argument to the ctor) is created, passing it the tuple as init args, and added to the session.

The script finally proceeds to updating the status of all jobs in the session, submitting new ones and retrieving
output as needed. When all jobs are done, the method done() is called, and its return value is used as the
script’s exit code.

The script’s exitcode tracks job status, in the following way. The exitcode is a bitfield; only the 4 least-
significant bits are used, with the following meaning:

Bit Meaning
0 Set if a fatal error occurred: the script could not complete
1 Set if there are jobs in FAILED state
2 Set if there are jobs in RUNNING or SUBMITTED state
3 Set if there are jobs in NEW state

This boils down to the following rules:

• exitcode == 0: all jobs terminated successfully, no further action

• exitcode == 1: an error interrupted script execution

2.2. Programmer Documentation 91

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• exitcode == 2: all jobs terminated, not all of them successfully

• exitcode > 3: run the script again to progress jobs

after_main_loop()
Hook executed after exit from the main loop.

This is called after the main loop has exited (for whatever reason), but before the session is finally
saved and other connections are finalized.

Override in subclasses to plug any behavior here; the default implementation does nothing.

before_main_loop()
Hook executed before entering the scripts’ main loop.

This is the last chance to alter the script state as it will be seen by the main loop.

Override in subclasses to plug any behavior here; the default implementation does nothing.

every_main_loop()
Hook executed during each round of the main loop.

This is called from within the main loop, after progressing all tasks.

Override in subclasses to plug any behavior here; the default implementation does nothing.

input_filename_pattern = None
IN SessionBasedScript CONSTRUCTOR

make_directory_path(pathspec, jobname)
Return a path to a directory, suitable for storing the output of a job (named after jobname). It is not
required that the returned path points to an existing directory.

This is called by the default process_args() using self.params.output (i.e., the argument to the
-o/--output option) as pathspec, and jobname and args exactly as returned by new_tasks()

The default implementation substitutes the following strings within pathspec:

•SESSION is replaced with the name of the current session (as specified by the -s/--session
command-line option) with a suffix .out appended;

•NAME is replaced with jobname;

•DATE is replaced with the current date, in YYYY-MM-DD format;

•TIME is replaced with the current time, in HH:MM format.

make_task_controller()
Return a ‘Controller’ object to be used for progressing tasks and getting statistics. In detail, a
good ‘Controller’ object has to implement progress and stats methods with the same interface as
gc3libs.core.Engine.

By the time this method is called (from _main()), the following instance attributes are already
defined:

•self._core: a gc3libs.core.Core instance;

•self.session: the gc3libs.session.Session instance that should be used to save/load jobs

In addition, any other attribute created during initialization and command-line parsing is of course
available.

new_tasks(extra)
Iterate over jobs that should be added to the current session. Each item yielded must have the form
(jobname, cls, args, kwargs), where:

•jobname is a string uniquely identifying the job in the session; if a job with the same name already
exists, this item will be ignored.

•cls is a callable that returns an instance of gc3libs.Application when called as cls(*args,
**kwargs).

92 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

•args is a tuple of arguments for calling cls.

•kwargs is a dictionary used to provide keyword arguments when calling cls.

This method is called by the default process_args(), passing self.extra as the extra parameter.

The default implementation of this method scans the arguments on the command-line for files match-
ing the glob pattern self.input_filename_pattern, and for each matching file returns a job name formed
by the base name of the file (sans extension), the class given by self.application, and the full path to
the input file as sole argument.

If self.instances_per_file and self.instances_per_job are set to a value other than 1, for each matching
file N jobs are generated, where N is the quotient of self.instances_per_file by self.instances_per_job.

See also: process_args()

pre_run()
Perform parsing of standard command-line options and call into parse_args() to do non-optional ar-
gument processing.

print_summary_table(output, stats)
Print a text summary of the session status to output. This is used to provide the “normal” output of the
script; when the -l option is given, the output of the print_tasks_table function is appended.

Override this in subclasses to customize the report that you provide to users. By default, this prints a
table with the count of tasks for each possible state.

The output argument is a file-like object, only the write method of which is used. The stats argument
is a dictionary, mapping each possible Run.State to the count of tasks in that state; see Engine.stats for
a detailed description.

print_tasks_table(output=<open file ‘<stdout>’, mode ‘w’>,
states=Enum([’TERMINATED’, ‘UNKNOWN’, ‘SUBMITTED’, ‘RUN-
NING’, ‘TERMINATING’, ‘STOPPED’, ‘NEW’]), only=<type ‘object’>)

Output a text table to stream output, giving details about tasks in the given states.

Optional second argument states restricts the listing to tasks that are in one of the specified states. By
default, all task states are allowed. The states argument should be a list or a set of Run.State values.

Optional third argument only further restricts the listing to tasks that are instances of a subclass of
only. By default, there is no restriction and all tasks are listed. The only argument can be a Python
class or a tuple – anything infact, that you can pass as second argument to the isinstance operator.

Parameters

• output – An output stream (file-like object)

• states – List of states (Run.State items) to consider.

• only – Root class (or tuple of root classes) of tasks to consider.

process_args()
Process command-line positional arguments and set up the session accordingly. In particular, new jobs
should be added to the session during the execution of this method: additions are not contemplated
elsewhere.

This method is called by the standard _main() after loading or creating a session into self.session.
New jobs should be appended to self.session and it is also permitted to remove existing ones.

The default implementation calls new_tasks() and adds to the session all jobs whose name does
not clash with the jobname of an already existing task.

See also: new_tasks()

setup()
Setup standard command-line parsing.

GC3Libs scripts should probably override setup_args() to modify command-line parsing.

2.2. Programmer Documentation 93

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

setup_args()
Set up command-line argument parsing.

The default command line parsing considers every argument as an (input) path name; processing of
the given path names is done in parse_args()

gc3libs.cmdline.nonnegative_int(num)
This function raise an ArgumentTypeError if num is a negative integer (<0), and returns int(num) otherwise.
num can be any object which can be converted to an int.

>>> nonnegative_int('1')
1
>>> nonnegative_int(1)
1
>>> nonnegative_int('-1')
Traceback (most recent call last):

...
ArgumentTypeError: '-1' is not a non-negative integer number.
>>> nonnegative_int(-1)
Traceback (most recent call last):

...
ArgumentTypeError: '-1' is not a non-negative integer number.

Please note that 0 and ‘-0’ are ok:

>>> nonnegative_int(0)
0
>>> nonnegative_int(-0)
0
>>> nonnegative_int('0')
0
>>> nonnegative_int('-0')
0

Floats are ok too:

>>> nonnegative_int(3.14)
3
>>> nonnegative_int(0.1)
0

>>> nonnegative_int('ThisWillRaiseAnException')
Traceback (most recent call last):

...
ArgumentTypeError: 'ThisWillRaiseAnException' is not a non-negative ...

gc3libs.cmdline.positive_int(num)
This function raises an ArgumentTypeError if num is not a*strictly* positive integer (>0) and returns
int(num) otherwise. num can be any object which can be converted to an int.

>>> positive_int('1')
1
>>> positive_int(1)
1
>>> positive_int('-1')
Traceback (most recent call last):
...
ArgumentTypeError: '-1' is not a positive integer number.
>>> positive_int(-1)
Traceback (most recent call last):
...
ArgumentTypeError: '-1' is not a positive integer number.
>>> positive_int(0)
Traceback (most recent call last):

94 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

...
ArgumentTypeError: '0' is not a positive integer number.

Floats are ok too:

>>> positive_int(3.14)
3

but please take care that float greater than 0 will fail:

>>> positive_int(0.1)
Traceback (most recent call last):
...
ArgumentTypeError: '0.1' is not a positive integer number.

Please note that 0 is NOT ok:

>>> positive_int(-0)
Traceback (most recent call last):
...
ArgumentTypeError: '0' is not a positive integer number.
>>> positive_int('0')
Traceback (most recent call last):
...
ArgumentTypeError: '0' is not a positive integer number.
>>> positive_int('-0')
Traceback (most recent call last):
...
ArgumentTypeError: '-0' is not a positive integer number.

Any string which does cannot be converted to an integer will fail:

>>> positive_int('ThisWillRaiseAnException')
Traceback (most recent call last):

...
ArgumentTypeError: 'ThisWillRaiseAnException' is not a positive integer ...

gc3libs.config

Deal with GC3Pie configuration files.

class gc3libs.config.Configuration(*locations, **extra_args)
In-memory representation of the GC3Pie configuration.

This class provides facilities for:

•parsing configuration files (methods load() and merge_file());

•validating the loaded values;

•instanciating the internal GC3Pie objects resulting from the configuration (methods make_auth()
and make_resource()).

The constructor takes a list of files to load (locations) and a list of key=value pairs to provide defaults for
the configuration. Both lists are optional and can be omitted, resulting in a configuration containing only
GC3Pie default values.

Example 1: initialization from config file:

>>> import os
>>> example_cfgfile = os.path.join(
... os.path.dirname(__file__), 'etc/gc3pie.conf.example')
>>> cfg = Configuration(example_cfgfile)
>>> cfg.debug
'0'

2.2. Programmer Documentation 95

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Example 2: initialization from key=value list:

>>> cfg = Configuration(auto_enable_auth=False, foo=1, bar='baz')
>>> cfg.auto_enable_auth
False
>>> cfg.foo
1
>>> cfg.bar
'baz'

When both a configuration file and a key=value list is present, values in the configuration files override
those in the key=value list:

>>> cfg = Configuration(example_cfgfile, debug=1)
>>> cfg.debug
'0'

Example 3: default initialization:

>>> cfg = Configuration()
>>> cfg.auto_enable_auth
True

auth_factory
The instance of gc3libs.authentication.Auth used to manage auth access for the resources.

This is a read-only attribute, created upon first access with the values set in self.auths and
self.auto_enabled.

load(*locations)
Merge settings from configuration files into this Configuration instance.

Environment variables and ~ references are expanded in the location file names.

If any of the specified files does not exist or cannot be read (for whatever reason), a message is logged
but the error is ignored. However, a NoConfigurationFile exception is raised if none of the specified
locations could be read.

Raises gc3libs.exceptions.NoConfigurationFile if none of the specified files could be read.

make_auth(name)
Return factory for auth credentials configured in section [auth/name].

make_resources(ignore_errors=True)
Make backend objects corresponding to the configured resources.

Return a dictionary, mapping the resource name (string) into the corresponding backend object.

By default, errors in constructing backends (e.g., due to a bad configuration) are silently ignored:
the offending configuration is just dropped. This can be changed by setting the optional argument
ignore_errors to False: in this case, an exception is raised whenever we fail to construct a backend.

merge_file(filename)
Read configuration files and merge the settings into this Configuration object.

Contrary to load() (which see), the file name is taken literally and an error is raised if the file cannot
be read for whatever reason.

Any parameter which is set in the configuration files [DEFAULT] section, and whose name does not
start with underscore (_) defines an attribute in the current Configuration.

Warning: No type conversion is performed on values set this way - so they all end up being
strings!

Raises gc3libs.exceptions.ConfigurationError if the configuration file does not exist, can-
not be read, is corrupt or has wrong format.

96 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.core

Top-level interface to Grid functionality.

class gc3libs.core.Core(cfg, matchmaker=<gc3libs.core.MatchMaker object>, re-
source_errors_are_fatal=None)

Core operations: submit, update state, retrieve (a snapshot of) output, cancel job.

Core operations are blocking, i.e., they return only after the operation has successfully completed, or an
error has been detected.

Operations are always performed by a Core object. Core implements an overlay Grid on the resources
specified in the configuration file.

Initialization of a Core instance also initializes all resources in the passed Configuration in-
stance. By default, GC3Pie’s Core objects will ignore errors in initializing resources, and only raise
an exception if no resources can be initialized. This can be changed by either passing an op-
tional argument resource_errors_are_fatal=True, or by setting the environmental variable
GC3PIE_RESOURCE_INIT_ERRORS_ARE_FATAL to yes or 1.

add(task)
This method is here just to allow Core and Engine objects to be used interchangeably. It’s effectively
a no-op, as it makes no sense in the synchronous/blocking semantics implemented by Core.

close()
Used to invoke explicitly the destructor on objects e.g. LRMS

fetch_output(app, download_dir=None, overwrite=False, changed_only=True, **extra_args)
Retrieve output into local directory app.output_dir.

If the task is not expected to produce any output (i.e., app.would_output == False) then the only effect
of this is to advance the state of TERMINATING tasks to TERMINATED.

Optional argument download_dir overrides the download location.

The download directory is created if it does not exist. If it already exists, and the optional argument
overwrite is False (default), it is renamed with a .NUMBER suffix and a new empty one is created
in its place. Otherwise, if ‘overwrite‘ is True, files are downloaded over the ones already present; in
this case, the changed_only argument controls which files are overwritten:

•if changed_only is True (default), then only files for which the source has a different size or has
been modified more recently than the destination are copied;

•if changed_only is False, then all files in source will be copied into destination, unconditionally.

Source files that do not exist at destination will be copied, independently of the overwrite and
changed_only settings.

If the task is in TERMINATING state, the state is changed to TERMINATED, attribute output_dir
is set to the absolute path to the directory where files were downloaded, and the terminated transition
method is called on the app object.

Task output cannot be retrieved when app.execution is in one of the states NEW or SUBMITTED; an
OutputNotAvailableError exception is thrown in these cases.

Raise gc3libs.exceptions.OutputNotAvailableError if no output can be fetched from the re-
mote job (e.g., the Application/Task object is in NEW or SUBMITTED state, indicating
the remote job has not started running).

free(app, **extra_args)
Free up any remote resources used for the execution of app. In particular, this should delete any remote
directories and files.

It is an error to call this method if app.execution.state is anything other than TERMINATED: an Invali-
dOperation exception will be raised in this case.

Raise gc3libs.exceptions.InvalidOperation if app.execution.state differs from
Run.State.TERMINATED.

2.2. Programmer Documentation 97

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

get_resources(**extra_args)
Return list of resources configured into this Core instance.

kill(app, **extra_args)
Terminate a job.

Terminating a job in RUNNING, SUBMITTED, or STOPPED state entails canceling the job with the
remote execution system; terminating a job in the NEW or TERMINATED state is a no-op.

peek(app, what=’stdout’, offset=0, size=None, **extra_args)
Download size bytes (at offset bytes from the start) from the remote job standard output or error stream,
and write them into a local file. Return file-like object from which the downloaded contents can be
read.

If size is None (default), then snarf all available contents of the remote stream from offset unto the end.

The only allowed values for the what arguments are the strings ‘stdout’ and ‘stderr’, indicating that
the relevant section of the job’s standard output resp. standard error should be downloaded.

remove(task)
This method is here just to allow Core and Engine objects to be used interchangeably. It’s effectively
a no-op, as it makes no sense in the synchronous/blocking semantics implemented by Core.

select_resource(match)
Disable resources that do not satisfy predicate match. Return number of enabled resources.

Argument match can be:

•either a function (or a generic callable) that is passed each Resource object in turn, and should
return a boolean indicating whether the resources should be kept (True) or not (False);

•or it can be a string: only resources whose name matches (wildcards * and ? are allowed) are
retained.

Note: Calling this method modifies the configured list of resources in-place.

submit(app, resubmit=False, targets=None, **extra_args)
Submit a job running an instance of the given task app.

Upon successful submission, call the submitted method on the app object. If targets are given, sub-
mission of the task is attempted to the resources in the order given; the submit method returns after
the first successful attempt. If targets is None (default), a brokering procedure is run to determine the
best resource among the configured ones.

At the beginning of the submission process, the app.execution state is reset to NEW; if submission is
successful, the task will be in SUBMITTED or RUNNING state when this call returns.

Raise gc3libs.exceptions.InputFileError if an input file does not exist or cannot otherwise
be read.

Parameters

• app (Task) – A GC3Pie Task instance to be submitted.

• resubmit – If True, submit task regardless of its execution state; if False (de-
fault), submission is a no-op if task is not in NEW state.

• targets (list) – A list of Resource‘s to submit the task to; resources are tried in
the order given. If ‘‘None‘ (default), perform brokering among all the configured
resources.

update_job_state(*apps, **extra_args)
Update state of all applications passed in as arguments.

If keyword argument update_on_error is False (default), then application execution state is not
changed in case a backend error happens; it is changed to UNKNOWN otherwise.

98 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Note that if state of a job changes, the Run.state calls the appropriate handler method on the applica-
tion/task object.

Raise gc3libs.exceptions.InvalidArgument in case one of the passed Application or Task ob-
jects is invalid. This can stop updating the state of other objects in the argument list.

Raise gc3libs.exceptions.ConfigurationError if the configuration of this Core object is in-
valid or otherwise inconsistent (e.g., a resource references a non-existing auth section).

update_resources(resources=<built-in function all>, **extra_args)
Update the state of a given set of resources.

Each resource object in the returned list will have its updated attribute set to True if the update opera-
tion succeeded, or False if it failed.

Optional argument resources should be a subset of the resources configured in this Core instance (the
actual Lrms objects, not the resource names). By default, all configured resources are updated.

class gc3libs.core.Engine(controller, tasks=[], store=None, can_submit=True,
can_retrieve=True, max_in_flight=0, max_submitted=0,
output_dir=None, scheduler=<gc3libs.core.scheduler ob-
ject>, retrieve_running=False, retrieve_overwrites=False, re-
trieve_changed_only=True)

Submit tasks in a collection, and update their state until a terminal state is reached. Specifically:

•tasks in NEW state are submitted;

•the state of tasks in SUBMITTED, RUNNING or STOPPED state is updated;

•when a task reaches TERMINATED state, its output is downloaded.

The behavior of Engine instances can be further customized by setting the following instance attributes:

can_submit Boolean value: if False, no task will be submitted.

can_retrieve Boolean value: if False, no output will ever be retrieved.

max_in_flight If >0, limit the number of tasks in SUBMITTED or RUNNING state: if the num-
ber of tasks in SUBMITTED, RUNNING or STOPPED state is greater than max_in_flight,
then no new submissions will be attempted.

max_submitted If >0, limit the number of tasks in SUBMITTED state: if the number of tasks
in SUBMITTED, RUNNING or STOPPED state is greater than max_submitted, then no new
submissions will be attempted.

output_dir Base directory for job output; if not None, each task’s results will be downloaded in
a subdirectory named after the task’s permanent_id.

scheduler A factory function for creating objects that conform to the Scheduler interface to
control task submission; see the Scheduler documentation for details. The default value
implements a first-come first-serve algorithm: tasks are submitted in the order they have
been added to the Engine.

retrieve_running If True, snapshot output from RUNNING jobs at every invocation of
progress()

retrieve_overwrites If True, overwrite files in the output directory of any job (as opposed to
moving destination away and downloading a fresh copy). See Core.fetch_output()
for details.

retrieve_changed_only If both this and overwrite are True, then only changed files are down-
loaded. See Core.fetch_output() for details.

Any of the above can also be set by passing a keyword argument to the constructor (assume g is a Core
instance):

| >>> e = Engine(g, can_submit=False)
| >>> e.can_submit
| False

2.2. Programmer Documentation 99

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

add(task)
Add task to the list of tasks managed by this Engine. Adding a task that has already been added to this
Engine instance results in a no-op.

close()
Call explicilty finalize methods on relevant objects e.g. LRMS

fetch_output(task, output_dir=None, overwrite=False, changed_only=True, **extra_args)
Enqueue task for later output retrieval.

Warning: FIXME
The output_dir, overwrite, and changed_only parameters are currently ignored.

free(task, **extra_args)
Proxy for Core.free, which see.

get_resources()
Return list of resources configured into this Core instance.

kill(task, **extra_args)
Schedule a task for killing on the next progress run.

peek(task, what=’stdout’, offset=0, size=None, **extra_args)
Proxy for Core.peek (which see).

progress()
Update state of all registered tasks and take appropriate action. Specifically:

•tasks in NEW state are submitted;

•the state of tasks in SUBMITTED, RUNNING, STOPPED or UNKNOWN state is updated;

•when a task reaches TERMINATING state, its output is downloaded.

•tasks in TERMINATED status are simply ignored.

The max_in_flight and max_submitted limits (if >0) are taken into account when attempting submis-
sion of tasks.

remove(task)
Remove a task from the list of tasks managed by this Engine.

select_resource(match)
Disable resources that do not satisfy predicate match. Return number of enabled resources.

Argument match can be:

•either a function (or a generic callable) that is passed each Resource object in turn, and should
return a boolean indicating whether the resources should be kept (True) or not (False);

•or it can be a string: only resources whose name matches (wildcards * and ? are allowed) are
retained.

Note: Calling this method modifies the configured list of resources in-place.

stats(only=None)
Return a dictionary mapping each state name into the count of tasks in that state. In addition, the
following keys are defined:

•ok: count of TERMINATED tasks with return code 0

•failed: count of TERMINATED tasks with nonzero return code

•total: total count of managed tasks, whatever their state

100 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

If the optional argument only is not None, tasks whose whose class is not contained in only are ignored.
: param tuple only: Restrict counting to tasks of these classes.

submit(task, resubmit=False, targets=None, **extra_args)
Submit task at the next invocation of progress.

The task state is reset to NEW and then added to the collection of managed tasks.

The targets argument is only present for interface compatiblity with Core.submit() but is other-
wise ignored.

update_job_state(*tasks, **extra_args)
Return list of current states of the given tasks. States will only be updated at the next invocation of
progress; in particular, no state-change handlers are called as a result of calling this method.

class gc3libs.core.MatchMaker
Select and sort resources for attempting submission of a Task.

A match-making algorithm must implement two methods:

•filter: given a task and a list of resources, return the list of resources that the given task could be
submitted to.

•rank: given a task and a list of resources, return a list of resources sorted in preference order, i.e.,
submission of the given task will be attempted to the first returned resource, then the next one, etc.

This class implements the default match-making algorithm in GC3Pie, which operates as follows:

•filter phase: if task has a compatible_resources method (as instances of Application do), retain
only those resources where it evaluates to True. Otherwise, return the resources list unchanged.

•rank phase: sort resources according to the task’s rank_resources method, or retain the given order if
task does not define such method.

filter(task, resources)
Return the subset of resources to which task could be submitted to.

Note that the result subset could be empty (no resource can accomodate task’s requirements).

The default implementation uses the task’s compatible_resources method to retain only the resources
that satisfy the task’s requirements. If task does not provide such a method, the resource list is returned
unchanged.

rank(task, resources)
Sort the list of resources in the preferred order for submitting task.

Unless overridden in a derived class, this calls the task’s rank_resources method to sort the list. If the
task does not provide such a method, the resources list is returned unchanged.

class gc3libs.core.Scheduler(tasks, resources)
Instances of the Scheduler class are used in Engine.progress() to determine what tasks (among those
in Run.State.NEW state) are to be submitted.

A Scheduler object must implement both the context protocol and the iterator protocol.

The way a Scheduler instance is actually used within Engine is as follows:

0.A Scheduler instance is created, passing it two arguments: a list of tasks in NEW state, and a dictionary
of configured resources (keys are resource names, values are actual resource objects).

1.When a new submission cycle starts, the __enter__() method is called.

2.The Engine iterates by repeatedly calling the next() method to receive tasks to be submitted. The
send() and throw() methods are used to notify the scheduler of the outcome of the submission
attempt.

3.When the submission cycle ends, the __exit__() method is called.

2.2. Programmer Documentation 101

http://goo.gl/SvWWyw
http://goo.gl/ue2zje

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The Scheduler.schedule generator is the heart of the submission process and has basically complete control
over it. It is initialized with the list of tasks in NEW state, and the list of configured resources. The next()
method should yield pairs (task index, resource name), where the task index is the position of the task to be
submitted next in the given list, and –similarly– the resource name is the name of the resource to which the
task should be submitted.

For each pair yielded, submission of that task to the selected resource is attempted; the state of the task
object after submission is sent back (via the send() method) to the Scheduler instance; if an exception is
raised, that exception is thrown (via the throw() method) into the scheduler object instead. Submission
stops when the next() call raises a StopIteration exception.

class gc3libs.core.scheduler(fn)
Decorate a generator function for use as a Scheduler object.

gc3libs.debug

Tools for debugging GC3Libs based programs.

Part of the code used in this module originally comes from:

• http://wordaligned.com/articles/echo

gc3libs.debug.format_arg_value(arg_val)
Return a string representing a (name, value) pair.

Example:

>>> format_arg_value(('x', (1, 2, 3)))
'x=(1, 2, 3)'

gc3libs.debug.is_class_private_name(name)
Determine if a name is a class private name.

gc3libs.debug.is_classmethod(instancemethod)
Determine if an instancemethod is a classmethod.

gc3libs.debug.method_name(method)
Return a method’s name.

This function returns the name the method is accessed by from outside the class (i.e. it prefixes “private”
methods appropriately).

gc3libs.debug.name(item)
Return an item’s name.

gc3libs.debug.trace(fn, log=<bound method Logger.debug of <logging.Logger object at
0x7f946414a590>>)

Logs calls to a function.

Returns a decorated version of the input function which “echoes” calls made to it by writing out the func-
tion’s name and the arguments it was called with.

gc3libs.debug.trace_class(cls, log=<bound method Logger.debug of <logging.Logger object at
0x7f946414a590>>)

Trace calls to class methods and static functions

gc3libs.debug.trace_instancemethod(cls, method, log=<bound method Logger.debug of
<logging.Logger object at 0x7f946414a590>>)

Change an instancemethod so that calls to it are traced.

Replacing a classmethod is a little more tricky. See: http://www.python.org/doc/current/ref/types.html

gc3libs.debug.trace_module(mod, log=<bound method Logger.debug of <logging.Logger ob-
ject at 0x7f946414a590>>)

Trace calls to functions and methods in a module.

102 Chapter 2. Table of Contents

http://wordaligned.com/articles/echo
http://www.python.org/doc/current/ref/types.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.exceptions

Exceptions specific to the gc3libs package.

In addition to the exceptions listed here, gc3libs functions try to use Python builtin exceptions with the same
meaning they have in core Python, namely:

• TypeError is raised when an argument to a function or method has an incompatible type or does not imple-
ment the required protocol (e.g., a number is given where a sequence is expected).

• ValueError‘is raised when an argument to a function or method has the correct type, but fails to satisfy
other constraints in the function contract (e.g., a positive number is required, and ‘-1 is passed instead).

• AssertionError is raised when some internal assumption regarding state or function/method calling contract
is violated. Informally, this indicates a bug in the software.

exception gc3libs.exceptions.ApplicationDescriptionError(msg, do_log=True)
Raised when the dumped description on a given Application produces something that the LRMS backend
cannot process.

exception gc3libs.exceptions.AuthError(msg, do_log=False)
Base class for Auth-related errors.

Should never be instanciated: create a specific error class describing the actual error condition.

exception gc3libs.exceptions.AuxiliaryCommandError(msg, do_log=False)
Raised when some external command that we depend upon has failed.

For instance, we might need to list processes on a remote machine but ps aux does not run because of
insufficient privileges.

exception gc3libs.exceptions.ConfigurationError(msg, do_log=True)
Raised when the configuration file (or parts of it) could not be read/parsed. Also used to signal that a
required parameter is missing or has an unknown/invalid value.

exception gc3libs.exceptions.ConfigurationFileError(msg, do_log=True)
Generic issue with the configuration file(s).

exception gc3libs.exceptions.CopyError(source, destination, ex)
Error copying a file from source to ‘destination.

exception gc3libs.exceptions.DataStagingError(msg, do_log=False)
Base class for data staging and movement errors.

Should never be instanciated: create a specific error class describing the actual error condition.

exception gc3libs.exceptions.DetachedFromGridError(msg, do_log=False)
Raised when a method (other than attach()) is called on a detached Task instance.

exception gc3libs.exceptions.DuplicateEntryError(msg, do_log=False)
Raised by Application.__init__ if not all (local or remote) entries in the input or output files are distinct.

exception gc3libs.exceptions.Error(msg, do_log=False)
Base class for all error-level exceptions in GC3Pie.

Generally, this indicates a non-fatal error: depending on the nature of the task, steps could be taken to
continue, but users must be aware that an error condition occurred, so the message is sent to the logs at the
ERROR level.

Exceptions indicating an error condition after which the program cannot continue and should immediately
stop, should use the FatalError base class.

exception gc3libs.exceptions.FatalError(msg, do_log=True)
A fatal error: execution cannot continue and program should report to user and then stop.

The message is sent to the logs at CRITICAL level when the exception is first constructed.

This is the base class for all fatal exceptions.

2.2. Programmer Documentation 103

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

exception gc3libs.exceptions.InputFileError(msg, do_log=True)
Raised when an input file is specified, which does not exist or cannot be read.

exception gc3libs.exceptions.InternalError(msg, do_log=False)
Raised when some function cannot fulfill its duties, for reasons that do not depend on the library client code.
For instance, when a response string gotten from an external command cannot be parsed as expected.

exception gc3libs.exceptions.InvalidArgument(msg, do_log=False)
Raised when the arguments passed to a function do not honor some required contract. For instance, either
one of two optional arguments must be provided, but none of them was.

exception gc3libs.exceptions.InvalidOperation(msg, do_log=False)
Raised when an operation is attempted, that is not considered valid according to the system state. For
instance, trying to retrieve the output of a job that has not yet been submitted.

exception gc3libs.exceptions.InvalidResourceName(msg, do_log=False)
Raised to signal that no computational resource with the given name is defined in the configuration file.

exception gc3libs.exceptions.InvalidType(msg, do_log=False)
A specialization of‘InvalidArgument‘ for cases when the type of the passed argument does not match ex-
pectations.

exception gc3libs.exceptions.InvalidUsage(msg, do_log=True)
Raised when a command is not provided all required arguments on the command line, or the arguments do
not match the expected syntax.

Since the exception message is the last thing a user will see, try to be specific about what is wrong on the
command line.

exception gc3libs.exceptions.InvalidValue(msg, do_log=False)
A specialization of‘InvalidArgument‘ for cases when the type of the passed argument does not match ex-
pectations.

exception gc3libs.exceptions.LRMSSkipSubmissionToNextIteration(msg,
do_log=False)

An elastic resource has initiated adapting for a new task. Although we cannot submit the task right now, it
will be accepted in the (not too distant) future.

exception gc3libs.exceptions.LoadError(msg, do_log=False)
Raised upon errors loading a job from the persistent storage.

exception gc3libs.exceptions.MaximumCapacityReached(msg, do_log=False)
Indicates that a resource is full and cannot run any more jobs.

exception gc3libs.exceptions.NoAccessibleConfigurationFile(msg, do_log=True)
Raised when the configuration file cannot be read (e.g., does not exist or has wrong permissions).

exception gc3libs.exceptions.NoConfigurationFile(msg, do_log=True)
Raised when the configuration file cannot be read (e.g., does not exist or has wrong permissions), or cannot
be parsed (e.g., is malformed).

exception gc3libs.exceptions.NoResources(msg, do_log=False)
Raised to signal that no resources are defined, or that none are compatible with the request.

exception gc3libs.exceptions.NoValidConfigurationFile(msg, do_log=True)
Raised when the configuration file cannot be parsed (e.g., is malformed).

exception gc3libs.exceptions.OutputNotAvailableError(msg, do_log=False)
Raised upon attempts to retrieve the output for jobs that are still in NEW or SUBMITTED state.

exception gc3libs.exceptions.RecoverableDataStagingError(msg, do_log=False)
Raised when transient problems with copying data to or from the remote execution site occurred.

This error is considered to be transient (e.g., network connectivity interruption), so trying again at a later
time could solve the problem.

exception gc3libs.exceptions.RecoverableError(msg, do_log=False)
Used to mark transient errors: retrying the same action at a later time could succeed.

104 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

This exception should never be instanciated: it is only to be used in except clauses to catch “try again”
situations.

exception gc3libs.exceptions.TaskError(msg, do_log=False)
Generic error condition in a Task object.

exception gc3libs.exceptions.UnexpectedStateError(msg, do_log=False)
Raised by Task.progress() when a job lands in STOPPED or TERMINATED state.

exception gc3libs.exceptions.UnknownJob(msg, do_log=False)
Raised when an operation is attempted on a task, which is unknown to the remote server or backend.

exception gc3libs.exceptions.UnknownJobState(msg, do_log=False)
Raised when a job state is gotten from the Grid middleware, that is not handled by the GC3Libs code. Might
actually mean that there is a version mismatch between GC3Libs and the Grid middleware used.

exception gc3libs.exceptions.UnrecoverableDataStagingError(msg, do_log=False)
Raised when problems with copying data to or from the remote execution site occurred.

exception gc3libs.exceptions.UnrecoverableError(msg, do_log=False)
Used to mark permanent errors: there’s no point in retrying the same action at a later time, because it will
yield the same error again.

This exception should never be instanciated: it is only to be used in except clauses to exclude “try again”
situations.

gc3libs.optimizer

Support for finding minima of functions with GC3Pie.

GC3Pie can run a large number of Application instances in parallel. The idea of this optimization module
is to use these core capabilities to perform optimization, which is particularly effective for optimization using
evolutionary algorithms, as they require several independent evaluations of the target function.

The optimization module has two main components, the driver and the algorithm. You need both an instance of a
driver and an instance of an algorithm to perform optimization of a given function.

Drivers perform optimization following a specific algorithm. Two drivers are currently implemented:
drivers.SequentialDriver that runs the entire algorithm on the local computer (hence, all the
evaluations of the target function required by the algorithm are performed one after the other), and
drivers.ParallelDriver splits the evaluations into tasks that are executed in parallel using GC3Pie’s
remote execution facilities.

This module implements a generic framework for evolutionary algorithms, and one particular type of global opti-
mization algorithm called Differential Evolution is worked out in full. Other Evolutionary Algorithms can easily
be incorporated by subclassing EvolutionaryAlgorithm. (Different optimization algorithms, for example
gradient based methods such as quasi-newton methods, could be implemented but likely require adaptations in the
driver classes.)

The module is organized as follows:

• drivers: Set of drivers that interface with GC3Libs to automatically drive the optimization process fol-
lowing a specified algorithm. ParallelDriver is the core of the optimization module, performing
optimization using an algorithm based on EvolutionaryAlgorithm.

• dif_evolution: Implements the Differential Evolution algorithm, in particular the evolution and selec-
tion step, based on EvolutionaryAlgorithm. See the module for details on the algorithm.

• extra: Provides tools to printing, plotting etc. that can be used as addons to
EvolutionaryAlgorithm.

class gc3libs.optimizer.EvolutionaryAlgorithm(initial_pop, itermax=100,
dx_conv_crit=None,
y_conv_crit=None, logger=None,
after_update_opt_state=[])

Base class for building an evolutionary algorithm for global optimization.

2.2. Programmer Documentation 105

http://stackoverflow.com/a/7519536

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Parameters

• initial_pop (list) – Initial population for the optimization.

• itermax (int) – Maximum # of iterations.

• dx_conv_crit (float) – Abort optimization if all population members are within a
certain distance to each other.

• y_conv_crit (float) – Declare convergence when the target function is below a
y_conv_crit.

• logger (obj) – Configured logger to use.

• after_update_opt_state (list) – Functions that are called at the end of
update_opt_state(). Use this list to provide problem-specific printing and plot-
ting routines. Examples can be found in gc3libs.optimizer.extra.

evolve()
Generates a new population fullfilling in_domain(). :rtype list of population members

has_converged()
Checks convergence based on two criteria:

1.Is the lowest target value in the population below y_conv_crit.

2.Are all population members within dx_conv_crit from the first population member.

Return type bool

select(new_pop, new_vals)
Update self.pop and self.vals given the new population and the corresponding fitness vector.

update_opt_state(new_pop, new_vals)
Stores set of function values corresponding to the current population, then updates optimizer state in
many ways:

•update the .best* variables accordingly;

•uses select() to determine the surviving population.

•advances iteration count.

gc3libs.optimizer.draw_population(lower_bds, upper_bds, dim, size, in_domain=None,
seed=None)

Draw a random population with the following criteria:

Parameters

• lower_bds (list) – List of length dim indicating the lower bound in each dimension.

• upper_bds (list) – List of length dim indicating the upper bound in each dimension.

• dim (int) – Dimension of each population member.

• size (int) – Population size.

• in_domain (fun) – Determines population’s validity. Takes no arguments and returns
a list of bools indicating each members validity.

• seed (float) – Seed to initialize NumPy’s random number generator.

Return type list of population members

gc3libs.optimizer.populate(create_fn, in_domain=None, max_n_resample=100)
Uses create_fn() to generate a new population. If in_domain() is not fulfilled, create_fn() is
called repeatedly. Invalid population members are replaced until reaching the desired valid population size
or max_n_resample calls to create_fn(). If max_n_resample is reached, a warning is issued and the
optimization continues with the remaining “invalid” members.

Parameters

106 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• create_fn (fun) – Generates a new population. Takes no arguments.

• in_domain (fun) – Determines population’s validity. Takes no arguments and returns
a list of bools indicating each members validity.

• max_n_resample (int) – Maximum number of resamples to be drawn to satisfy
:func:‘in_domain

Return type list of population members

gc3libs.optimizer.dif_evolution

This module implements a global optimization algorithm called Differential Evolution.

Consider the following optimization problem: 𝑚𝑖𝑛 𝑓(x) 𝑠.𝑡. x ∈ 𝐷, where 𝐷 ∈ 𝑅𝑑 and 𝑓 : 𝐷 ↦→ 𝑅. Class
DifferentialEvolutionAlgorithm solves this optimization problem using the differential evolution al-
gorithm. No further assumptions on the function 𝑓 are needed. Thus it can be non-convex, noisy etc.

The domain 𝐷 is implicitly specified by passing the function filtern_fn() to
DifferentialEvolutionAlgorithm.

Some information related to Differential Evolution can be found in the following papers:

1. Tvrdik 2008: http://www.proceedings2008.imcsit.org/pliks/95.pdf

2. Fleetwood: http://www.maths.uq.edu.au/MASCOS/Multi-Agent04/Fleetwood.pdf

3. Piyasatian: http://www-personal.une.edu.au/~jvanderw/DE_1.pdf

evolve_fn() is an adaptation of the following MATLAB code: http://www.icsi.berkeley.edu/~storn/DeMat.zip
hosted on http://www.icsi.berkeley.edu/~storn/code.html#deb1.

class gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm(initial_pop,
de_strategy=’DE_rand’,
de_step_size=0.85,
prob_crossover=1.0,
exp_cross=False,
iter-
max=100,
dx_conv_crit=None,
y_conv_crit=None,
in_domain=None,
seed=None,
log-
ger=None,
af-
ter_update_opt_state=[])

Differential Evolution Algorithm class. DifferentialEvolutionAlgorithm explicitly al-
lows for an another process to control the optimization. Driver classes can be found in
gc3libs.optimizer.drivers.py.

Parameters

• initial_pop (list) – Initial population for the optimization.

• de_strategy (str) – e.g. DE_rand_either_or_algorithm. Allowed are:

• de_step_size (float) – Differential Evolution step size.

• prob_crossover (float) – Probability new population draws will replace old mem-
bers.

• exp_cross (bool) – Set True to use exponential crossover.

• itermax (int) – Maximum # of iterations.

2.2. Programmer Documentation 107

http://www.proceedings2008.imcsit.org/pliks/95.pdf
http://www.maths.uq.edu.au/MASCOS/Multi-Agent04/Fleetwood.pdf
http://www-personal.une.edu.au/~jvanderw/DE_1.pdf
http://www.icsi.berkeley.edu/~storn/DeMat.zip
http://www.icsi.berkeley.edu/~storn/code.html#deb1

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• dx_conv_crit (float) – Abort optimization if all population members are within a
certain distance to each other.

• y_conv_crit (float) – Declare convergence when the target function is below a
y_conv_crit.

• in_domain (fun) – Optional function that implements nonlinear constraints.

• seed (float) – Seed to initialize NumPy’s random number generator.

• logger (obj) – Configured logger to use.

• after_update_opt_state (list) – Functions that are called at the end
of DifferentialEvolutionAlgorithm.after_update_opt_state().
Use this list to provide problem-specific printing and plotting routines. Examples can
be found in gc3libs.optimizer.extra.

The de_strategy value must be chosen from the dif_evolution.strategies enumeration. Allowed values are
(description of the strategies taken from http://www.icsi.berkeley.edu/~storn/DeMat.zip):

1.’DE_rand’: The classical version of DE.

2.’DE_local_to_best’: A version which has been used by quite a number of scientists. At-
tempts a balance between robustness # and fast convergence.

3.’DE_best_with_jitter’: Taylored for small population sizes and fast convergence. Di-
mensionality should not be too high.

4.’DE_rand_with_per_vector_dither’: Classical DE with dither to become even more ro-
bust.

5.’DE_rand_with_per_generation_dither’: Classical DE with dither to become even more robust.
Choosing de_step_size = 0.3 is a good start here.

6.’DE_rand_either_or_algorithm’: Alternates between differential mutation and three-point-
recombination.

evolve()
Generates a new population fullfilling in_domain.

Return type list of population members

static evolve_fn(population, prob_crossover, de_step_size, dim, best_iter, de_strategy,
exp_cross)

Return new population, evolved according to de_strategy.

Parameters

• population – Population generating offspring from.

• prob_crossover – Probability new population draws will replace old members.

• de_step_size – Differential Evolution step size.

• dim – Dimension of each population member.

• best_iter – Best population member of the current population.

• de_strategy – Differential Evolution strategy. See
DifferentialEvolutionAlgorithm.

• bool (exp_cross) – Set True to use exponential crossover.

select(new_pop, new_vals)
Perform a one-on-one battle by index, keeping the member with lowest corresponding value.

108 Chapter 2. Table of Contents

http://www.icsi.berkeley.edu/~storn/DeMat.zip

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.optimizer.drivers

Drivers to perform global optimization.

Global optimizations can be performed sequentially on a local machine using SequentialDriver. To make
use of parallelization, ParallelDriver allows submission of jobs to gc3pie ressources.

Drivers use an algorithm instance that conforms to optimizer.EvolutionaryAlgorithm to generate new
populations.

class gc3libs.optimizer.drivers.ComputeTargetVals(pop, jobname, iteration,
path_to_stage_dir, cur_pop_file,
task_constructor, **extra_args)

gc3libs.workflow.ParallelTaskCollection to evaluate the current pop using the user-
supplied task_constructor().

Parameters

• pop (list) – Population to evaluate.

• jobname (str) – Name of GridDriver instance driving the optimization.

• iteration (int) – Current iteration number.

• path_to_stage_dir (str) – Path to directory in which optimization takes place.

• cur_pop_file (str) – Filename under which the population is stored in the

current iteration dir. The population is discarded if no file is specified. :param task_constructor: Takes a
list of x vectors and the path to the current iteration directory. Returns Application instances that can be
executed on the grid.

class gc3libs.optimizer.drivers.ParallelDriver(jobname=’‘, path_to_stage_dir=’‘,
opt_algorithm=None,
task_constructor=None, ex-
tract_value_fn=<function <lambda>>,
cur_pop_file=’‘, **extra_args)

Drives an optimization using opt_algorithm on the grid.

At each iteration an instance of ComputeTargetVals uses task_constructor() to generate
gc3libs.Application instances to be executed in parallel. When all jobs are complete, the output
is analyzed with the user-supplied function extract_value_fn(). This function returns the function
value for all analyzed input vectors.

Parameters

• jobname (str) – string that labels this optimization case.

• path_to_stage_dir – directory in which to perform the optimization.

• opt_algorithm – Evolutionary algorithm instance that conforms to
optimizer.EvolutionaryAlgorithm.

• task_constructor – A function that takes a list of x vectors and the path to the
current iteration directory, and returns Application instances that can be executed on the
grid.

• extract_value_fn – Takes an Application instance returns the function value
computed in that task. The default implementation just looks for a .value attribute on
the application instance.

• cur_pop_file – Filename under which the population is stored in the current itera-
tion dir. The population is discarded if no file is specified.

Optimization drivers use GC3Pie in the following way: A SequentialTaskCollection represents
the main loop of the optimization algorithm, checking for convergence at each iteration. This allows for
resuming paused or crashed optimizations. Each iteration, the optimization algorithm provides a new set
of points to be evaluated. These points are each represented by an Application and bundled into a

2.2. Programmer Documentation 109

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

ParallelTaskCollection that manages each single Application until completion. The structure
of GC3Libs objects employed can be summarized as follows:

SequentialTaskCollection
|
v

ParallelTaskCollection
|
v

Application

class gc3libs.optimizer.drivers.SequentialDriver(opt_algorithm, target_fn,
path_to_stage_dir=’/home/docs/checkouts/readthedocs.org/user_builds/gc3pie/checkouts/2.4.1/gc3pie/docs’,
cur_pop_file=None, logger=None,
fmt=None)

Drives an optimization using opt_algorithm on the local machine.

The user-supplied target_fun() computes target values for the populations generated by opt_algorithm.

Parameters

• opt_algorithm – Evolutionary algorithm instance that conforms to
optimizer.EvolutionaryAlgorithm.

• target_fn – Function to evaluate a population and return the corresponding values.

• path_to_stage_dir – Directory in which to perform the optimization.

• cur_pop_file – Filename under which the population is stored in the current itera-
tion dir. The population is discarded if no file is specified.

• logger – Configured logger to use.

• fmt (str) – %-format string to use (e.g., %12.8f) to print values at each step of the
algorithm. If None (default), this verbose report is not generated, as it might be time-
consuming for large population sizes.

de_opt()
Drives optimization until convergence or itermax is reached.

gc3libs.optimizer.extra

Collection of tools to supplement optimization algorithm optimizer.EvolutionaryAlgorithm.

Include a list of desired tools in param after_update_opt_state of optimizer.EvolutionaryAlgorithm.

gc3libs.optimizer.extra.log_stats(algo, logger=<logging.RootLogger object>)
Log summary statistics for algo.

Parameters algo (str) – Instance of gc3libs.optimizer.EvolutionaryAlgorithm.

class gc3libs.optimizer.extra.plot_population(figure_dir)
Plot the 2-dimensional population of an gc3libs.optimizer.EvolutionaryAlgorithm in-
stance. If the population is not 2-d an error message appears and no plot is created.

Parameters figure_dir (str) – Path to the directory where plots should be stored. Directory
will be created if non-existent.

gc3libs.optimizer.extra.print_stats(algo, output=<open file ‘<stdout>’, mode ‘w’>)
Print summary statistics for algo.

Parameters

• algo (str) – Instance of gc3libs.optimizer.EvolutionaryAlgorithm.

• output – Output stream.

110 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.persistence

Facade to store and retrieve Job information from permanent storage.

A usage warning

This module saves Python objects using the pickle framework: thus, the Application subclass corresponding to a
job must be already loaded (or at least import-able) in the Python interpreter for pickle to be able to ‘undump’
the object from its on-disk representation.

In other words, if you create a custom Application subclass in some client code, GC3Utils won’t be able to read
job files created by this code, because the class definition is not available in GC3Utils.

The recommended simple workaround is for a stand-alone script to ‘import self’ and then use the fully qualified
name to run the script. In other words, start your script with this boilerplate code:

if __name__ == '__main__':
import myscriptname
myscriptname.MyScript().run()

The rest of the script now runs as the myscript module, which does the trick!

Note: Of course, the myscript.py file must be in the search path of the Python interpreter, or GC3Utils will
still complain!

gc3libs.persistence.make_store(uri, *args, **extra_args)
Factory producing concrete Store instances.

Given a URL and (optionally) initialization arguments, return a fully-constructed Store instance.

The only required argument is uri; if any other arguments are present in the function invocation, they are
passed verbatim to the constructor associated with the scheme of the given uri.

Example:

>>> fs1 = make_store('file:///tmp')
>>> fs1.__class__.__name__
'FilesystemStore'

Argument uri can also consist of a path name, in which case a URL scheme ‘file:///‘ is assumed:

>>> fs2 = make_store('/tmp')
>>> fs2.__class__.__name__
'FilesystemStore'

class gc3libs.persistence.Persistable(*args, **kwargs)
A mix-in class to mark that an object should be persisted by its ID.

Any instance of this class is saved as an ‘external reference’ when a container holding a reference to it is
saved.

class gc3libs.persistence.IdFactory(prefix=None, next_id_fn=None, id_class=<class
‘gc3libs.persistence.idfactory.Id’>)

Automatically generate a “unique identifier” (of class Id). Object identifiers are temporally unique: no
identifier will (ever) be re-used, even in different invocations of the program.

new(obj)
Return a new “unique identifier” instance (a string).

reserve(n)
Pre-allocate n IDs. Successive invocations of the Id constructor will return one of the pre-allocated,
with a potential speed gain if many Id objects are constructed in a loop.

class gc3libs.persistence.JobIdFactory(next_id_fn=None)
Override IdFactory behavior and generate IDs starting with a lowercase job prefix.

2.2. Programmer Documentation 111

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

class gc3libs.persistence.FilesystemStore(directory=’/home/docs/.gc3/jobs’, idfac-
tory=<gc3libs.persistence.idfactory.IdFactory
object>, protocol=2, **extra_args)

Save and load objects in a given directory. Uses Python’s standard pickle module to serialize objects onto
files.

All objects are saved as files in the given directory (default: gc3libs.Default.JOBS_DIR). The file name is
the object ID.

If an object contains references to other Persistable objects, these are saved in the file they would have been
saved if the save method was called on them in the first place, and only an ‘external reference’ is saved in
the pickled container. This ensures that: (1) only one copy of a shared object is ever saved, and (2) any
shared reference to Persistable objects is correctly restored when restoring the container.

The default idfactory assigns object IDs by appending a sequential number to the class name; see class Id
for details.

The protocol argument specifies the serialization protocol to use, if different from
gc3libs.persistence.serialization.DEFAULT_PROTOCOL.

Any extra keyword arguments are ignored for compatibility with SqlStore.

list()
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError
exception.

load(id_)
Load a saved object given its ID, and return it.

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.accessors

Accessors for object attributes and container items.

gc3libs.persistence.accessors.GET = <gc3libs.persistence.accessors.GetValue object>
Constant identity getter.

Use this for better readability (e.g., GET[0] instead of GetValue()[0]).

class gc3libs.persistence.accessors.GetAttributeValue(attr, xform=<function
<lambda>>, de-
fault=<object object>)

Return an accessor function for the given attribute.

An instance of GetAttributeValue is a callable that, given any object, returns the value of its attribute attr,
whose name is specified in the GetAttributeValue constructor:

>>> from gc3libs import Struct
>>> fn = GetAttributeValue('x')
>>> a = Struct(x=1, y=2)
>>> fn(a)
1

The accessor raises AttributeError if no such attribute exists):

112 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> b = Struct(z=3)
>>> fn(b)
Traceback (most recent call last):

...
AttributeError: 'Struct' object has no attribute 'x'

However, you can specify a default value, in which case the default value is returned and no error is raised:

>>> fn = GetAttributeValue('x', default=42)
>>> fn(b)
42
>>> fn = GetAttributeValue('y', default=None)
>>> print(fn(b))
None

In other words, if fn = GetAttributeValue(‘x’), then fn(obj) evaluates to obj.x.

If the string attr contains any dots, then attribute lookups are chained: if fn = GetAttributeValue(‘x.y’) then
fn(obj) evaluates to obj.x.y:

>>> fn = GetAttributeValue('x.y')
>>> a = Struct(x=Struct(y=42))
>>> fn(a)
42

The optional second argument xform allows composing the accessor with an arbitrary function that is passed
an object and should return a (possibly different) object whose attributes should be looked up. In other
words, if xform is specified, then the returned accessor function computes xform(obj).attr instead of obj.attr.

This allows combining GetAttributeValue with GetItemValue() (which see), to access objects in
deeply-nested data structures; see GetItemValue for examples.

class gc3libs.persistence.accessors.GetItemValue(place, xform=<function
<lambda>>, default=<object
object>)

Return accessor function for the given item in a sequence.

An instance of GetItemValue is a callable that, given any sequence/container object, returns the value of the
item at its place idx:

>>> fn = GetItemValue(1)
>>> a = 'abc'
>>> fn(a)
'b'
>>> b = { 1:'x', 2:'y' }
>>> fn(b)
'x'

In other words, if fn = GetItemValue(x), then fn(obj) evaluates to obj[x].

Note that the returned function fn raises IndexError or KeyError, (depending on the type of se-
quence/container) if place idx does not exist:

>>> fn = GetItemValue(42)
>>> a = list('abc')
>>> fn(a)
Traceback (most recent call last):

...
IndexError: list index out of range
>>> b = dict(x=1, y=2, z=3)
>>> fn(b)
Traceback (most recent call last):

...
KeyError: 42

However, you can specify a default value, in which case the default value is returned and no error is raised:

2.2. Programmer Documentation 113

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> fn = GetItemValue(42, default='foo')
>>> fn(a)
'foo'
>>> fn(b)
'foo'

The optional second argument xform allows composing the accessor with an arbitrary function that is passed
an object and should return a (possibly different) object where the item lookup should be performed. In
other words, if xform is specified, then the returned accessor function computes xform(obj)[idx] instead of
obj[idx]. For example:

>>> c = 'abc'
>>> fn = GetItemValue(1, xform=(lambda s: s.upper()))
>>> fn(c)
'B'

>>> c = (('a',1), ('b',2))
>>> fn = GetItemValue('a', xform=dict)
>>> fn(c)
1

This allows combining GetItemValue with GetAttrValue (which see), to access objects in deeply-nested
data structures.

class gc3libs.persistence.accessors.GetOnly(only, xform=<function <lambda>>, de-
fault=<object object>)

Apply accessor function to members of a certain class; return a default value otherwise.

The GetOnly accessor performs just like GetValue, but is effective only on instances of a certain class; if the
accessor function is passed an instance of a different class, the default value is returned:

>>> from gc3libs import Struct
>>> fn4 = GetOnly(Struct, default=42)
>>> isinstance(fn4(Struct(foo='bar')), Struct)
True
>>> isinstance(fn4(dict(foo='bar')), dict)
False
>>> fn4(dict(foo='bar'))
42

If default is not specified, then None is returned:

>>> fn5 = GetOnly(Struct)
>>> repr(fn5(dict(foo='bar')))
'None'

class gc3libs.persistence.accessors.GetValue(default=<object object>)
Provide easier compositional syntax for GetAttributeValue and GetItemValue.

Instances of GetAttributeValue and GetItemValue can be composed by passing one as xform parameter to the
other; however, this results in the writing order being the opposite of the composition order: for instance, to
create an accessor to evaluate x.a[0] for any Python object x, one has to write:

>>> from gc3libs import Struct
>>> fn1 = GetItemValue(0, GetAttributeValue('a'))

The GetValue class allows to write accessor expressions the way they are normally written in Python:

>>> GET = GetValue()
>>> fn2 = GET.a[0]
>>> x = Struct(a=[21,42], b='foo')
>>> fn1(x)
21
>>> fn2(x)
21

114 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The optional default argument specifies a value that should be used in case the required attribute or item is
not found:

>>> fn3 = GetValue(default='no value found').a[3]
>>> fn3(x)
'no value found'

ONLY(specifier)
Restrict the action of the accessor expression to members of a certain class; return default value other-
wise.

The invocation to only() should always be last:

>>> from gc3libs import Struct
>>> fn = GetValue(default='foo').a[0].ONLY(Struct)
>>> fn(Struct(a=['bar','baz']))
'bar'
>>> fn(dict(a=['bar','baz']))
'foo'

If it’s not last, you will get AttributeError like the following:

>>> fn = GetValue().ONLY(Struct).a[0]
>>> fn(dict(a=[0,1]))
Traceback (most recent call last):
...

AttributeError: 'NoneType' object has no attribute 'a'

gc3libs.persistence.filesystem

class gc3libs.persistence.filesystem.FilesystemStore(directory=’/home/docs/.gc3/jobs’,
idfac-
tory=<gc3libs.persistence.idfactory.IdFactory
object>, protocol=2, **ex-
tra_args)

Save and load objects in a given directory. Uses Python’s standard pickle module to serialize objects onto
files.

All objects are saved as files in the given directory (default: gc3libs.Default.JOBS_DIR). The file name is
the object ID.

If an object contains references to other Persistable objects, these are saved in the file they would have been
saved if the save method was called on them in the first place, and only an ‘external reference’ is saved in
the pickled container. This ensures that: (1) only one copy of a shared object is ever saved, and (2) any
shared reference to Persistable objects is correctly restored when restoring the container.

The default idfactory assigns object IDs by appending a sequential number to the class name; see class Id
for details.

The protocol argument specifies the serialization protocol to use, if different from
gc3libs.persistence.serialization.DEFAULT_PROTOCOL.

Any extra keyword arguments are ignored for compatibility with SqlStore.

list()
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError
exception.

load(id_)
Load a saved object given its ID, and return it.

remove(id_)
Delete a given object from persistent storage, given its ID.

2.2. Programmer Documentation 115

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.filesystem.make_filesystemstore(url, *args, **extra_args)
Return a FilesystemStore instance, given a ‘file:///‘ URL and optional initialization arguments.

This function is a bridge between the generic factory functions provided by
gc3libs.persistence.make_store() and gc3libs.persistence.register() and
the class constructor FilesystemStore:class.

Examples:

>>> fs1 = make_filesystemstore(gc3libs.url.Url('file:///tmp'))
>>> fs1.__class__.__name__
'FilesystemStore'

gc3libs.persistence.idfactory

class gc3libs.persistence.idfactory.Id
An automatically-generated “unique identifier” (a string-like object). The unique object identifier has the
form “PREFIX.NNN” where “NNN” is a decimal number, and “PREFIX” defaults to the object class name
but can be overridden in the Id constructor.

Two object IDs can be compared iff they have the same prefix; in which case, the result of the comparison
is the same as comparing the two sequence numbers.

class gc3libs.persistence.idfactory.IdFactory(prefix=None, next_id_fn=None,
id_class=<class
‘gc3libs.persistence.idfactory.Id’>)

Automatically generate a “unique identifier” (of class Id). Object identifiers are temporally unique: no
identifier will (ever) be re-used, even in different invocations of the program.

new(obj)
Return a new “unique identifier” instance (a string).

reserve(n)
Pre-allocate n IDs. Successive invocations of the Id constructor will return one of the pre-allocated,
with a potential speed gain if many Id objects are constructed in a loop.

class gc3libs.persistence.idfactory.JobIdFactory(next_id_fn=None)
Override IdFactory behavior and generate IDs starting with a lowercase job prefix.

gc3libs.persistence.serialization

Generic object serialization (using Python’s pickle/cPickle modules).

See the documentation for Python’s standard *pickle* and *cPickle* modules for more details.

gc3libs.persistence.sql

SQL-based storage of GC3pie objects.

class gc3libs.persistence.sql.SqlStore(url, table_name=’store’, idfactory=None, ex-
tra_fields={}, create=True, **extra_args)

Save and load objects in a SQL db, using python’s pickle module to serialize objects into a specific field.

Access to the DB is done via SQLAlchemy module, therefore any driver supported by SQLAlchemy will
be supported by this class.

116 Chapter 2. Table of Contents

http://docs.python.org/library/pickle.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The url argument is used to access the store. It is supposed to be a gc3libs.url.Url class, and therefore
may contain username, password, host and port if they are needed by the db used.

The table_name argument is the name of the table to create. By default it’s store.

The constructor will create the table_name table if it does not exist, but if there already is such a table it will
assume the it’s schema is compatible with our needs. A minimal table schema is as follow:

The meaning of the fields is:

id: this is the id returned by the save() method and univoquely identify a stored object.

data: the serialization of the object.

state: if the object is a Task istance this wil lbe the current execution state of the job

Field Type Null Key Default
id data state int(11) blob varchar(128) NO YES YES PRI NULL NULL NULL

The extra_fields argument is used to extend the database. It must contain a mapping <column> : <function>
where:

<column> is a sqlalchemy.Column object.

<function> is a function which takes the object to be saved as argument and returns the value to be stored
into the database. Any exception raised by this function will be ignored. Classes GetAttribute and
GetItem in module get provide convenient helpers to save object attributes into table columns.

For each extra column the save() method will call the corresponding <function> in order to get the correct
value to store into the db.

Any extra keyword arguments are ignored for compatibility with FilesystemStore.

list()
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError
exception.

load(id_)
Load a saved object given its ID, and return it.

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.sql.make_sqlstore(url, *args, **extra_args)
Return a SqlStore instance, given a SQLAlchemy URL and optional initialization arguments.

This function is a bridge between the generic factory functions provided by
gc3libs.persistence.make_store() and gc3libs.persistence.register() and
the class constructor SqlStore:class.

Examples:

| >>> ss1 = make_sqlstore(gc3libs.url.Url('sqlite:////tmp/foo.db'))
| >>> ss1.__class__.__name__
| 'SqlStore'

gc3libs.persistence.sql.sql_next_id_factory(db)
This function will return a function which can be used as next_id_fn argument for the IdFactory class
constructor.

db is DB connection class conform to DB API2.0 specs (works also with SQLAlchemy engine types)

2.2. Programmer Documentation 117

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The function returned has signature:

sql_next_id(n=1)

the id returned is the maximum id field in the store table plus 1.

gc3libs.persistence.store

class gc3libs.persistence.store.Persistable(*args, **kwargs)
A mix-in class to mark that an object should be persisted by its ID.

Any instance of this class is saved as an ‘external reference’ when a container holding a reference to it is
saved.

class gc3libs.persistence.store.Store
Interface for storing and retrieving objects on permanent storage.

Each save operation returns a unique “ID”; each ID is a Python string value, which is guaranteed to be
temporally unique, i.e., no two save operations in the same persistent store can result in the same IDs being
assigned to different objects. The “ID” is also stored in the instance attribute _id.

Any Python object can stored, provided it meets the following conditions:

•it can be pickled with Python’s standard module pickle.

•the instance attribute persistent_id is reserved for use by the Store class: it should not be set or altered
by other parts of the code.

list(**extra_args)
Return list of IDs of saved Job objects.

This is an optional method; classes that do not implement it should raise a NotImplementedError
exception.

load(id_)
Load a saved object given its ID, and return it.

remove(id_)
Delete a given object from persistent storage, given its ID.

replace(id_, obj)
Replace the object already saved with the given ID with a copy of obj.

save(obj)
Save an object, and return an ID.

gc3libs.persistence.store.make_store(uri, *args, **extra_args)
Factory producing concrete Store instances.

Given a URL and (optionally) initialization arguments, return a fully-constructed Store instance.

The only required argument is uri; if any other arguments are present in the function invocation, they are
passed verbatim to the constructor associated with the scheme of the given uri.

Example:

>>> fs1 = make_store('file:///tmp')
>>> fs1.__class__.__name__
'FilesystemStore'

Argument uri can also consist of a path name, in which case a URL scheme ‘file:///‘ is assumed:

>>> fs2 = make_store('/tmp')
>>> fs2.__class__.__name__
'FilesystemStore'

118 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.persistence.store.register(scheme, constructor)
Register constructor as the factory corresponding to an URL scheme.

If a different constructor is already registered for the same scheme, it is silently overwritten.

The registry mapping schemes to constructors is used in the make_store() to create concrete instances
of gc3libs.persistence.Store, given a URI that identifies the kind and location of the storage.

Parameters

• scheme (str) – URL scheme to associate with the given constructor.

• constructor (callable) – A callable returning a Store

instance. Typically, a class constructor.

gc3libs.quantity

Manipulation of quantities with units attached with automated conversion among compatible units.

For details and the discussion leading up to this, see: <http://code.google.com/p/gc3pie/issues/detail?id=47>

class gc3libs.quantity.Duration
Represent the duration of a time lapse.

Construction of a duration can be done by parsing a string specification; several formats are accepted:

•A duration is an aggregate of days, hours, minutes and seconds:

>>> l3 = Duration('1day 4hours 9minutes 16seconds')
>>> l3.amount(Duration.s) # convert to seconds
101356

•Any of the terms can be omitted (in which case it defaults to zero):

>>> l4 = Duration('1day 4hours 16seconds')
>>> l4 == l3 - Duration('9 minutes')
True

•The unit names can be singular or plural, and any amount of space can be added between the time unit
name and the associated amount:

>>> l5 = Duration('3 hour 42 minute')
>>> l6 = Duration('3 hours 42 minutes')
>>> l7 = Duration('3hours 42minutes')
>>> l5 == l6 == l7
True

•Unit names can also be abbreviated using just the leading letter:

>>> l8 = Duration('3h 42m')
>>> l9 = Duration('3h42m')
>>> l8 == l9
True

•The abbreviated formats HH:MM:SS and DD:HH:MM:SS are also accepted:

>>> # 1 hour + 1 minute + 1 second
>>> l1 = Duration('01:01:01')
>>> l1 == Duration('3661 s')
True

>>> # 1 day, 2 hours, 3 minutes, 4 seconds
>>> l2 = Duration('01:02:03:04')
>>> l2.amount(Duration.s)
93784

2.2. Programmer Documentation 119

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

However, the formats HH:MM and MM:SS are rejected as ambiguous:

>>> # is this hours:minutes or minutes:seconds ?
>>> l0 = Duration('01:02')
Traceback (most recent call last):
...

ValueError: Duration '01:02' is ambiguous: use '1m 2s' ...

•Finally, you can specify a duration like any other quantity, as an integral amount of a given time unit:

>>> l1 = Duration('1 day')
>>> l2 = Duration('86400 s')
>>> l1 == l2
True

A new quantity can also be defined as a multiple of an existing one:

>>> an_hour = Duration('1 hour')
>>> a_day = 24 * an_hour
>>> a_day.amount(Duration.h)
24

The quantities Duration.hours, Duration.minutes and Duration.seconds (and their single-
letter abbreviations h, m, s) are pre-defined with their obvious meaning.

Also module-level aliases hours, minutes and seconds (and the one-letter forms) are available:

>>> a_day1 = 24*hours
>>> a_day2 = 1440*minutes
>>> a_day3 = 86400*seconds

This allows for yet another way of constructing duration objects, i.e., by passing the amount and the unit
separately to the constructor:

>>> a_day4 = Duration(24, hours)

Two durations are equal if they indicate the exact same amount in seconds:

>>> a_day1 == a_day2
True
>>> a_day1.amount(s)
86400
>>> a_day2.amount(s)
86400

>>> a_day == an_hour
False
>>> a_day.amount(minutes)
1440
>>> an_hour.amount(minutes)
60

Basic arithmetic is possible with durations:

>>> two_hours = an_hour + an_hour
>>> two_hours == 2*an_hour
True

>>> one_hour = two_hours - an_hour
>>> one_hour.amount(seconds)
3600

It is also possible to add duration quantities defined with different units; the result is naturally expressed in
the smaller unit of the two:

120 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> one_hour_and_half = an_hour + 30*minutes
>>> one_hour_and_half
Duration(90, unit=m)

Note that the two unit class and numeric amount are accessible through the unit and amount() attributes:

>>> one_hour_and_half.unit
Duration(1, unit=m)
>>> one_hour_and_half.amount()
90

The amount() method accepts an optional specification of an alternate unit to express the amount into:

>>> one_hour_and_half.amount(Duration.hours)
1

An optional conv argument is available to specify a numerical domain for conversion, in case the default
integer arithmetic is not precise enough:

>>> one_hour_and_half.amount(Duration.hours, conv=float)
1.5

The to_str() method allows representing a duration as a string, and provides choice of the output format
and unit. The format string should contain exactly two %-specifiers: the first one is used to format the
numerical amount, and the second one to format the measurement unit name.

By default, the unit used originally for defining the quantity is used:

>>> an_hour.to_str('%d [%s]')
'1 [hour]'

This can be overridden by specifying an optional second argument unit:

>>> an_hour.to_str('%d [%s]', unit=Duration.m)
'60 [m]'

A third optional argument conv can set the numerical type to be used for conversion computations:

>>> an_hour.to_str('%.1f [%s]', unit=Duration.m, conv=float)
'60.0 [m]'

The default numerical type is int, which in particular implies that you get a null amount if the requested unit
is larger than the quantity:

>>> an_hour.to_str('%d [%s]', unit=Duration.days)
'0 [days]'

Conversion to string uses the unit originally used for defining the quantity and the %g%s format:

>>> str(an_hour)
'1hour'

to_timedelta(duration)
Convert a duration into a Python datetime.timedelta object.

This is useful to operate on Python’s datetime.time and datetime.date objects, which can be added or
subtracted to datetime.timedelta.

class gc3libs.quantity.Memory
Represent an amount of RAM.

Construction of a memory quantity can be done by parsing a string specification (amount followed by unit):

>>> byte = Memory('1 B')
>>> kilobyte = Memory('1 kB')

A new quantity can also be defined as a multiple of an existing one:

2.2. Programmer Documentation 121

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> a_thousand_kB = 1000*kilobyte

The base-10 units (up to TB, Terabytes) and base-2 (up to TiB, TiBiBytes) are available as attributes of the
Memory class. This allows for a third way of constructing quantity objects, i.e., by passing the amount and
the unit separately to the constructor:

>>> a_megabyte = Memory(1, Memory.MB)
>>> a_mibibyte = Memory(1, Memory.MiB)

>>> a_gigabyte = 1*Memory.GB
>>> a_gibibyte = 1*Memory.GiB

>>> two_terabytes = 2*Memory.TB
>>> two_tibibytes = 2*Memory.TiB

Two memory quantities are equal if they indicate the exact same amount in bytes:

>>> kilobyte == 1000*byte
True
>>> a_megabyte == a_mibibyte
False
>>> a_megabyte < a_mibibyte
True
>>> a_megabyte > a_gigabyte
False

Basic arithmetic is possible with memory quantities:

>>> two_bytes = byte + byte
>>> two_bytes == 2*byte
True
>>> half_gigabyte = a_gigabyte / 2
>>> half_gigabyte
Memory(476.837, unit=MiB)

The ratio of two memory quantities is correctly computed as a pure (floating-point) number:

>>> a_gigabyte / a_megabyte
1000.0

It is also possible to add memory quantities defined with different units; the result is naturally expressed in
the smaller unit of the two:

>>> one_gigabyte_and_half = 1*Memory.GB + 500*Memory.MB
>>> one_gigabyte_and_half
Memory(1500, unit=MB)

Note that the two unit class and numeric amount are accessible through the unit and amount() attributes:

>>> one_gigabyte_and_half.unit
Memory(1, unit=MB)
>>> one_gigabyte_and_half.amount()
1500

The amount() method accepts an optional specification of an alternate unit to express the amount into:

>>> one_gigabyte_and_half.amount(Memory.GB)
1

An optional conv argument is available to specify a numerical domain for conversion, in case the default
integer arithmetic is not precise enough:

>>> one_gigabyte_and_half.amount(Memory.GB, conv=float)
1.5

122 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The to_str() method allows representing a quantity as a string, and provides choice of the output format
and unit. The format string should contain exactly two %-specifiers: the first one is used to format the
numerical amount, and the second one to format the measurement unit name.

By default, the unit used originally for defining the quantity is used:

>>> a_megabyte.to_str('%d [%s]')
'1 [MB]'

This can be overridden by specifying an optional second argument unit:

>>> a_megabyte.to_str('%d [%s]', unit=Memory.kB)
'1000 [kB]'

A third optional argument conv can set the numerical type to be used for conversion computations:

>>> a_megabyte.to_str('%g%s', unit=Memory.GB, conv=float)
'0.001GB'

The default numerical type is int, which in particular implies that you get a null amount if the requested unit
is larger than the quantity:

>>> a_megabyte.to_str('%g%s', unit=Memory.GB, conv=int)
'0GB'

Conversion to string uses the unit originally used for defining the quantity and the %g%s format:

>>> str(a_megabyte)
'1MB'

class gc3libs.quantity.Quantity(base_unit_name, **other_units)
Metaclass for creating quantity classes.

This factory creates subclasses of _Quantity and bootstraps the base unit.

The name of the base unit is given as argument to the metaclass instance:

>>> class Memory1(object):
... __metaclass__ = Quantity('B')
...
>>> B = Memory1('1 B')
>>> print (2*B)
2B

Optional keyword arguments create additional units; the argument key gives the unit name, and its value
gives the ratio of the new unit to the base unit. For example:

>>> class Memory2(object):
... __metaclass__ = Quantity('B', kB=1000, MB=1000*1000)
...
>>> a_thousand_kB = Memory2('1000kB')
>>> MB = Memory2('1 MB')
>>> a_thousand_kB == MB
True

Note that the units (base and additional) are also available as class attributes for easier referencing in Python
code:

>>> a_thousand_kB == Memory2.MB
True

gc3libs.session

class gc3libs.session.Session(path, store_url=None, create=True, **extra_args)
A ‘session’ is a persistent collection of tasks.

2.2. Programmer Documentation 123

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Tasks added to the session are persistently recorded using an instance of gc3libs.persistence.Store. Stores
can be shared among different sessions: each session knows wich jobs it ‘owns’.

A session is associated to a directory, which holds all the data releated to that session. Specifically, two files
are always created in the session directory andused internally by this class:

•index.txt: contains a list of all job IDs associated with this session;

•store.url: its contents are the URL of the store to create (as would be passed to the
gc3libs.persistence.make_store factory).

To only argument needed to instantiate a session is the path of the directory; the directory name will be used
as the identifier of the session itself. For example, the following code creates a temporary directory and the
two files mentioned above inside it:

>>> import tempfile; tmpdir = tempfile.mktemp(dir='.')
>>> session = Session(tmpdir)
>>> sorted(os.listdir(tmpdir))
['created', 'session_ids.txt', 'store.url']

When a Session object is created with a path argument pointing to an existing valid session, the index of
jobs is automatically loaded into memory, and the store pointed to by the store.url file in the session
directory will be used, disregarding the contents of the ‘store_url‘ argument.

In other words, the store_url argument is only used when creating a new session. If no store_url argument is
passed (i.e., it has its default value), a Session object will instantiate and use a FileSystemStore store,
keeping data in the jobs subdirectory of the session directory.

Methods add and remove are provided to manage the collection; the len() operator returns the number of
tasks in the session; iteration over a session returns the tasks one by one:

>>> task1 = gc3libs.Task()
>>> id1 = session.add(task1)
>>> task2 = gc3libs.Task()
>>> id2 = session.add(task2)
>>> len(session)
2
>>> for t in session:
... print(type(t))
<class 'gc3libs.Task'>
<class 'gc3libs.Task'>
>>> session.remove(id1)
>>> len(session)
1

When passed the flush=False optional argument, methods add and remove do not update the session meta-
data: i.e., the tasks are added or removed from the store and the in-memory task list, but the updated task list
is not saved back to disk. This is useful when making many changes in a row; call Session.flush to persist
the full set of changes.

The Store object is anyway accessible in the store attribute of each Session instance:

>>> type(session.store)
<class 'gc3libs.persistence.filesystem.FilesystemStore'>

However, Session defines methods save and load as a convenient proxy to the corresponding Store methods:

>>> obj = gc3libs.persistence.Persistable()
>>> oid = session.save(obj)
>>> obj2 = session.load(oid)
>>> obj.persistent_id == obj2.persistent_id
True

The whole session data can be removed by using method destroy:

124 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> session.destroy()
>>> os.path.exists(session.path)
False

add(task, flush=True)
Add a Task to the current session, save it to the associated persistent storage, and return the assigned
persistent_id:

>>> # create new, empty session
>>> import tempfile; tmpdir = tempfile.mktemp(dir='.')
>>> session = Session(tmpdir)
>>> len(session)
0

>>> # add a task to it
>>> task = gc3libs.Task()
>>> tid1 = session.add(task)
>>> len(session)
1

Duplicates are silently ignored: the same object can be added many times to the session, but gets the
same ID each time:

>>> # add a different task
>>> tid2 = session.add(task)
>>> len(session)
1
>>> tid1 == tid2
True

>>> # do cleanup
>>> session.destroy()
>>> os.path.exists(session.path)
False

destroy()
Remove the session directory and all the tasks it contains from the store which are associated to this
session.

Note: This will remove the associated task storage if and only if the storage is contained in the session
directory!

flush()
Update session metadata.

Should be used after a save/remove operations, to ensure that the session state and metadata is correctly
persisted.

forget(task_id, flush=True)
Remove task identified by task_id from the current session but not from the associated storage.

list_ids()
Return set of all task IDs belonging to this session.

list_names()
Return set of names of tasks belonging to this session.

load(obj_id)
Load an object from persistent storage and return it.

This is just a convenience proxy for calling method load on the Store instance associated with this
session.

remove(task_id, flush=True)
Remove task identified by task_id from the current session and from the associated storage.

2.2. Programmer Documentation 125

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

save(obj)
Save an object to the persistent storage and return persistent_id of the saved object.

This is just a convenience proxy for calling method save on the Store instance associated with this
session.

The object is not added to the session, nor is session meta-data updated:

create an empty session
>>> import tempfile; tmpdir = tempfile.mktemp(dir='.')
>>> session = Session(tmpdir)
>>> 0 == len(session)
True

use `save` on an object
>>> obj = gc3libs.persistence.Persistable()
>>> oid = session.save(obj)

session is still empty
>>> 0 == len(session)
True

do cleanup
>>> session.destroy()
>>> os.path.exists(session.path)
False

save_all(flush=True)
Save all modified tasks to persistent storage.

set_end_timestamp(time=None)
Create a file named finished in the session directory. It’s creation/modification time will be used to
know when the session has finished.

Please note that Session does not know when a session is finished, so this method should be called by
a SessionBasedScript class.

set_start_timestamp(time=None)
Create a file named created in the session directory. It’s creation/modification time will be used to
know when the session has sarted.

gc3libs.template

Support and expansion of programmatic templates.

The module gc3libs.template allows creation of textual templates with a simple object-oriented programming
interface: given a string with a list of substitutions (using the syntax of Python’s standard substitute module), a
set of replacements can be specified, and the gc3libs.template.expansions function will generate all possible texts
coming from the same template. Templates can be nested, and expansions generated recursviely.

class gc3libs.template.Template(template, validator=<function <lambda>>, **extra_args)
A template object is a pair (obj, keywords). Methods are provided to substitute the keyword values into
obj, and to iterate over expansions of the given keywords (optionally filtering the allowed combination of
keyword values).

Second optional argument validator must be a function that accepts a set of keyword arguments, and returns
True if the keyword combination is valid (can be expanded/substituted back into the template) or False if it
should be discarded. The default validator passes any combination of keywords/values.

expansions(**keywords)
Iterate over all valid expansions of the templated object and the template keywords. Returned items are
Template instances constucted with the expanded template object and a valid combination of keyword
values.

126 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

substitute(**extra_args)
Return result of interpolating the value of keywords into the template. Keyword arguments extra_args
can be used to override keyword values passed to the constructor.

If the templated object provides a substitute method, then return the result of invoking it with the
template keywords as keyword arguments. Otherwise, return the result of applying Python standard
library’s string.Template.safe_substitute() on the string representation of the templated object.

Raise ValueError if the set of keywords/values is not valid according to the validator specified in the
constructor.

gc3libs.template.expansions(obj, **extra_args)
Iterate over all expansions of a given object, recursively expanding all templates found. How the expansions
are actually computed, depends on the type of object being passed in the first argument obj:

•If obj is a list, iterate over expansions of items in obj. (In particular, this flattens out nested lists.)

Example:

>>> L = [0, [2, 3]]
>>> list(expansions(L))
[0, 2, 3]

•If obj is a dictionary, return dictionary formed by all combinations of a key k in obj with an expansion
of the corresponding value obj[k]. Expansions are computed by recursively calling expansions(obj[k],
**extra_args).

Example:

>>> D = {'a':1, 'b':[2,3]}
>>> E = list(expansions(D))
>>> len(E)
2
>>> {'a': 1, 'b': 2} in E
True
>>> {'a': 1, 'b': 3} in E
True

•If obj is a tuple, iterate over all tuples formed by the expansion of every item in obj. (Each item t[i] is
expanded by calling expansions(t[i], **extra_args).)

Example:

>>> T = (1, [2, 3])
>>> list(expansions(T))
[(1, 2), (1, 3)]

•If obj is a Template class instance, then the returned values are the result of applying the template to
the expansion of each of its keywords.

Example:

>>> T1 = Template("a=${n}", n=[0,1])
>>> list(expansions(T1))
[Template('a=${n}', n=0), Template('a=${n}', n=1)]

Note that keywords passed to the expand invocation override the ones used in template construction:

>>> T2 = Template("a=${n}")
>>> list(expansions(T2, n=[1,3]))
[Template('a=${n}', n=1), Template('a=${n}', n=3)]

>>> T3 = Template("a=${n}", n=[0,1])
>>> list(expansions(T3, n=[2,3]))
[Template('a=${n}', n=2), Template('a=${n}', n=3)]

2.2. Programmer Documentation 127

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

•Any other value is returned unchanged.

Example:

>>> V = 42
>>> list(expansions(V))
[42]

gc3libs.url

Utility classes and methods for dealing with URLs.

class gc3libs.url.Url
Represent a URL as a named-tuple object. This is an immutable object that cannot be changed after creation.

The following read-only attributes are defined on objects of class Url.

Attribute Index Value if not present
scheme 0 URL scheme specifier empty string
netloc 1 Network location part empty string
path 2 Hierarchical path empty string
query 3 Query component empty string
hostname 4 Host name (lower case) None
port 5 Port number as integer (if present) None
username 6 User name None
password 7 Password None

There are two ways of constructing Url objects:

•By passing a string urlstring:

>>> u = Url('http://www.example.org/data')

>>> u.scheme
'http'
>>> u.netloc
'www.example.org'
>>> u.path
'/data'

The default URL scheme is file:

>>> u = Url('/tmp/foo')
>>> u.scheme
'file'
>>> u.path
'/tmp/foo'

Please note that extra leading slashes ‘/’ are interpreted as the begining of a network location:

>>> u = Url('//foo/bar')
>>> u.path
'/bar'
>>> u.netloc
'foo'
>>> Url('///foo/bar').path
'/foo/bar'

Check RFC 3986 http://tools.ietf.org/html/rfc3986

If force_abs is True (default), then the path attribute is made absolute, by calling os.path.abspath if
necessary:

128 Chapter 2. Table of Contents

http://tools.ietf.org/html/rfc3986

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> u = Url('foo/bar', force_abs=True)
>>> os.path.isabs(u.path)
True

Otherwise, if force_abs is False, then the path attribute stores the passed string unchanged:

>>> u = Url('foo', force_abs=False)
>>> os.path.isabs(u.path)
False
>>> u.path
'foo'

Other keyword arguments can specify defaults for missing parts of the URL:

>>> u = Url('/tmp/foo', scheme='file', netloc='localhost')
>>> u.scheme
'file'
>>> u.netloc
'localhost'
>>> u.path
'/tmp/foo'

•By passing keyword arguments only, to construct an Url object with exactly those values for the named
fields:

>>> u = Url(scheme='http', netloc='www.example.org', path='/data')

In this form, the force_abs parameter is ignored.

See also: http://goo.gl/9WcRvR

adjoin(relpath)
Return a new Url, constructed by appending relpath to the path section of this URL.

Example:

>>> u0 = Url('http://www.example.org')
>>> u1 = u0.adjoin('data')
>>> str(u1)
'http://www.example.org/data'

>>> u2 = u1.adjoin('moredata')
>>> str(u2)
'http://www.example.org/data/moredata'

Even if relpath starts with /, it is still appended to the path in the base URL:

>>> u3 = u2.adjoin('/evenmore')
>>> str(u3)
'http://www.example.org/data/moredata/evenmore'

class gc3libs.url.UrlKeyDict(iter_or_dict=None, force_abs=False)
A dictionary class enforcing that all keys are URLs.

Strings and/or objects returned by urlparse can be used as keys. Setting a string key automatically translates
it to a URL:

>>> d = UrlKeyDict()
>>> d['/tmp/foo'] = 1
>>> for k in d.keys(): print (type(k), k.path)
(<class '....Url'>, '/tmp/foo')

Retrieving the value associated with a key works with both the string or the url value of the key:

>>> d['/tmp/foo']
1

2.2. Programmer Documentation 129

http://goo.gl/9WcRvR

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> d[Url('/tmp/foo')]
1

Key lookup can use both the string or the Url value as well:

>>> '/tmp/foo' in d
True
>>> Url('/tmp/foo') in d
True
>>> 'file:///tmp/foo' in d
True
>>> 'http://example.org' in d
False

Class UrlKeyDict supports initialization by copying items from another dict instance or from an iterable of
(key, value) pairs:

>>> d1 = UrlKeyDict({ '/tmp/foo':'foo', '/tmp/bar':'bar' })
>>> d2 = UrlKeyDict([('/tmp/foo', 'foo'), ('/tmp/bar', 'bar')])
>>> d1 == d2
True

Differently from dict, initialization from keyword arguments alone is not supported:

>>> d3 = UrlKeyDict(foo='foo')
Traceback (most recent call last):

...
TypeError: __init__() got an unexpected keyword argument 'foo'

An empty UrlKeyDict instance is returned by the constructor when called with no parameters:

>>> d0 = UrlKeyDict()
>>> len(d0)
0

If force_abs is True, then all paths are converted to absolute ones in the dictionary keys.

>>> d = UrlKeyDict(force_abs=True)
>>> d['foo'] = 1
>>> for k in d.keys(): print os.path.isabs(k.path)
True

>>> d = UrlKeyDict(force_abs=False)
>>> d['foo'] = 2
>>> for k in d.keys(): print os.path.isabs(k.path)
False

class gc3libs.url.UrlValueDict(iter_or_dict=None, force_abs=False, **extra_args)
A dictionary class enforcing that all values are URLs.

Strings and/or objects returned by urlparse can be used as values. Setting a string value automatically
translates it to a URL:

>>> d = UrlValueDict()
>>> d[1] = '/tmp/foo'
>>> d[2] = Url('file:///tmp/bar')
>>> for v in d.values(): print (type(v), v.path)
(<class '....Url'>, '/tmp/foo')
(<class '....Url'>, '/tmp/bar')

Retrieving the value associated with a key always returns the URL-type value, regardless of how it was set:

>>> repr(d[1]) == "Url(scheme='file', netloc='', path='/tmp/foo', " "hostname=None, port=None, username=None, password=None)"
True

Class UrlValueDict supports initialization by any of the methods that work with a plain dict instance:

130 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> d1 = UrlValueDict({ 'foo':'/tmp/foo', 'bar':'/tmp/bar' })
>>> d2 = UrlValueDict([('foo', '/tmp/foo'), ('bar', '/tmp/bar')])
>>> d3 = UrlValueDict(foo='/tmp/foo', bar='/tmp/bar')

>>> d1 == d2
True
>>> d2 == d3
True

In particular, an empty UrlDict instance is returned by the constructor when called with no parameters:

>>> d0 = UrlValueDict()
>>> len(d0)
0

If force_abs is True, then all paths are converted to absolute ones in the dictionary values.

>>> d = UrlValueDict(force_abs=True)
>>> d[1] = 'foo'
>>> for v in d.values(): print os.path.isabs(v.path)
True

>>> d = UrlValueDict(force_abs=False)
>>> d[2] = 'foo'
>>> for v in d.values(): print os.path.isabs(v.path)
False

gc3libs.utils

Generic Python programming utility functions.

This module collects general utility functions, not specifically related to GC3Libs. A good rule of thumb for
determining if a function or class belongs in here is the following: place a function or class in this module if you
could copy its code into the sources of a different project and it would not stop working.

class gc3libs.utils.Enum
A generic enumeration class. Inspired by: http://goo.gl/1AL5N0 with some more syntactic sugar added.

An Enum class must be instanciated with a list of strings, that make the enumeration “label”:

>>> Animal = Enum('CAT', 'DOG')

Each label is available as an instance attribute, evaluating to itself:

>>> Animal.DOG
'DOG'

>>> Animal.CAT == 'CAT'
True

As a consequence, you can test for presence of an enumeration label by string value:

>>> 'DOG' in Animal
True

Finally, enumeration labels can also be iterated upon:

>>> for a in sorted(Animal): print a
CAT
DOG

class gc3libs.utils.ExponentialBackoff(slot_duration=0.05, max_retries=5)
Generate waiting times with the exponential backoff algorithm.

2.2. Programmer Documentation 131

http://goo.gl/1AL5N0
http://goo.gl/PxVICA

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Returned times are in seconds (or fractions thereof); they are integral multiples of the basic time slot, which
is set with the slot_duration constructor parameter.

After max_retries have been attempted, any call to this iterator will raise a StopIteration exception.

The ExponentialBackoff class implements the iterator protocol, so you can just retrieve waiting times with
the .next() method, or by looping over it:

>>> random.seed(314) # not-so-random for testing purposes...
>>> for wt in ExponentialBackoff():
... print wt,
...
0.0 0.0 0.0 0.25 0.15 0.3

next()
Return next waiting time.

wait()
Wait for another while.

class gc3libs.utils.History
A list of messages with timestamps and (optional) tags.

The append method should be used to add a message to the History:

>>> L = History()
>>> L.append('first message')
>>> L.append('second one')

The last method returns the text of the last message appended, with its timestamp:

>>> L.last().startswith('second one at')
True

Iterating over a History instance returns message texts in the temporal order they were added to the list, with
their timestamp:

>>> for msg in L: print(msg)
first message ...

append(message, *tags)
Append a message to this History.

The message is timestamped with the time at the moment of the call.

The optional tags argument is a sequence of strings. Tags are recorded together with the message and
may be used to filter log messages given a set of labels. (This feature is not yet implemented.)

format_message(message)
Return a formatted message, appending to the message its timestamp in human readable format.

last()
Return text of last message appended. If log is empty, return empty string.

class gc3libs.utils.PlusInfinity
An object that is greater-than any other object.

>>> x = PlusInfinity()

>>> x > 1
True
>>> 1 < x
True
>>> 1245632479102509834570124871023487235987634518745 < x
True

132 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> x > sys.maxint
True
>>> x < sys.maxint
False
>>> sys.maxint < x
True

PlusInfinity objects are actually larger than any given Python object:

>>> x > 'azz'
True
>>> x > object()
True

Note that PlusInfinity is a singleton, therefore you always get the same instance when calling the class
constructor:

>>> x = PlusInfinity()
>>> y = PlusInfinity()
>>> x is y
True

Relational operators try to return the correct value when comparing PlusInfinity to itself:

>>> x < y
False
>>> x <= y
True
>>> x == y
True
>>> x >= y
True
>>> x > y
False

class gc3libs.utils.Singleton
Derived classes of Singleton can have only one instance in the running Python interpreter.

>>> x = Singleton()
>>> y = Singleton()
>>> x is y
True

class gc3libs.utils.Struct(initializer=None, **extra_args)
A dict-like object, whose keys can be accessed with the usual ‘[...]’ lookup syntax, or with the ‘.’ get
attribute syntax.

Examples:

>>> a = Struct()
>>> a['x'] = 1
>>> a.x
1
>>> a.y = 2
>>> a['y']
2

Values can also be initially set by specifying them as keyword arguments to the constructor:

>>> a = Struct(z=3)
>>> a['z']
3
>>> a.z
3

Like dict instances, Struct‘s have a ‘copy method to get a shallow copy of the instance:

2.2. Programmer Documentation 133

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> b = a.copy()
>>> b.z
3

copy()
Return a (shallow) copy of this Struct instance.

class gc3libs.utils.YieldAtNext(generator)
Provide an alternate protocol for generators.

Wrap a Python generator object, and buffer the return values from send and throw calls, returning None
instead. Return the yielded value –or raise the StopIteration exception– upon the subsequent call to the next
method.

gc3libs.utils.backup(path)
Rename the filesystem entry at path by appending a unique numerical suffix; return new name.

For example,

1.create a test file:

>>> import tempfile
>>> path = tempfile.mkstemp()[1]

2.then make a backup of it; the backup will end in .~1~:

>>> path1 = backup(path)
>>> os.path.exists(path + '.~1~')
True

3. re-create the file, and make a second backup: this time the file will be renamed with a .~2~ extension:

>>> open(path, 'w').close()
>>> path2 = backup(path)
>>> os.path.exists(path + '.~2~')
True

cleaning up tests

>>> os.remove(path+'.~1~')
>>> os.remove(path+'.~2~')

gc3libs.utils.basename_sans(path)
Return base name without the extension.

gc3libs.utils.cache_for(lapse)
Cache the result of a (nullary) method invocation for a given amount of time. Use as a decorator on object
methods whose results are to be cached.

Store the result of the first invocation of the decorated method; if another invocation happens before lapse
seconds have passed, return the cached value instead of calling the real function again. If a new call happens
after the grace period has expired, call the real function and store the result in the cache.

Note: Do not use with methods that take keyword arguments, as they will be discarded! In addition,
arguments are compared to elements in the cache by identity, so that invoking the same method with equal
but distinct object will result in two separate copies of the result being computed and stored in the cache.

Cache results and timestamps are stored into the objects’ _cache_value and _cache_last_updated attributes,
so the caches are destroyed with the object when it goes out of scope.

The working of the cached method can be demonstrated by the following simple code:

>>> class X(object):
... def __init__(self):
... self.times = 0
... @cache_for(2)

134 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

... def foo(self):

... self.times += 1

... return ("times effectively run: %d" % self.times)
>>> x = X()
>>> x.foo()
'times effectively run: 1'
>>> x.foo()
'times effectively run: 1'
>>> time.sleep(3)
>>> x.foo()
'times effectively run: 2'

gc3libs.utils.cat(*args, **extra_args)
Concatenate the contents of all args into output. Both output and each of the args can be a file-like object
or a string (indicating the path of a file to open).

If append is True, then output is opened in append-only mode; otherwise it is overwritten.

gc3libs.utils.copy_recursively(src, dst, overwrite=False, changed_only=True)
Copy src to dst, descending it recursively if necessary.

The overwrite and changed_only optional arguments have the same effect as in copytree() (which see).

gc3libs.utils.copyfile(src, dst, overwrite=False, changed_only=True, link=False)
Copy a file from src to dst; return True if the copy was actually made.

If overwrite is False (default), an existing destination entry is left unchanged and False is returned.

If overwrite is True, then changed_only determines if the destination file is overwritten:

•if changed_only is True (default), then destination is overwritten if and only if it has a different size
or has been modified less recently than the source;

•if changed_only is False, then the destination is overwritten unconditionally.

If link is True, an attempt at hard-linking is done first; failing that, we copy the source file onto the destination
one. Permission bits and modification times are copied as well.

If dst is a directory, a file with the same basename as src is created (or overwritten) in the directory specified.

Return True or False, depending on whether the source file was actually copied (or linked) to the desti-
nation.

gc3libs.utils.copytree(src, dst, overwrite=False, changed_only=True)
Recursively copy an entire directory tree rooted at src.

If overwrite is False (default), entries that already exist in the destination tree are left unchanged and not
overwritten.

If overwrite is True, then changed_only determines which files are overwritten:

•if changed_only is True (default), then only files for which the source has a different size or has been
modified more recently than the destination are copied;

•if changed_only is False, then all files in source will be copied into destination, unconditionally.

Destination directory dst is created if it does not exist.

See also: shutil.copytree.

gc3libs.utils.count(seq, predicate)
Return number of items in seq that match predicate. Argument predicate should be a callable that accepts
one argument and returns a boolean.

gc3libs.utils.defproperty(fn)
Decorator to define properties with a simplified syntax in Python 2.4. See http://goo.gl/IoOZ8m for details
and examples.

2.2. Programmer Documentation 135

http://goo.gl/IoOZ8m

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.utils.deploy_configuration_file(filename, template_filename=None)
Ensure that configuration file filename exists; possibly copying it from the specified template_filename.

Return True if a file with the specified name exists in the configuration directory. If not, try to copy the
template file over and then return False; in case the copy operations fails, a NoConfigurationFile exception
is raised.

The template_filename is always resolved relative to GC3Libs’ ‘package resource’ directory (i.e., the etc/
directory in the sources. If template_filename is None, then it is assumed to be the base name of filename.

gc3libs.utils.dirname(pathname)
Same as os.path.dirname but return . in case of path names with no directory component.

gc3libs.utils.fgrep(literal, filename)
Iterate over all lines in a file that contain the literal string.

gc3libs.utils.first(seq)
Return the first element of sequence or iterator seq. Raise TypeError if the argument does not implement
either of the two interfaces.

Examples:

>>> s = [0, 1, 2]
>>> first(s)
0

>>> s = {'a':1, 'b':2, 'c':3}
>>> first(sorted(s.keys()))
'a'

gc3libs.utils.from_template(template, **extra_args)
Return the contents of template, substituting all occurrences of Python formatting directives ‘%(key)s’ with
the corresponding values taken from dictionary extra_args.

If template is an object providing a read() method, that is used to gather the template contents; else, if a file
named template exists, the template contents are read from it; otherwise, template is treated like a string
providing the template contents itself.

gc3libs.utils.getattr_nested(obj, name)
Like Python’s getattr, but perform a recursive lookup if name contains any dots.

gc3libs.utils.grep(pattern, filename)
Iterate over all lines in a file that match the pattern regular expression.

gc3libs.utils.ifelse(test, if_true, if_false)
Return if_true is argument test evaluates to True, return if_false otherwise.

This is just a workaround for Python 2.4 lack of the conditional assignment operator:

>>> a = 1
>>> b = ifelse(a, "yes", "no"); print b
yes
>>> b = ifelse(not a, 'yay', 'nope'); print b
nope

gc3libs.utils.irange(start, stop, step=1)
Iterate over all values greater or equal than start and less than stop. (Or the reverse, if step < 0.)

Example:

>>> list(irange(1, 5))
[1, 2, 3, 4]
>>> list(irange(0, 8, 3))
[0, 3, 6]
>>> list(irange(8, 0, -2))
[8, 6, 4, 2]

136 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Unlike the built-in range function, irange also accepts floating-point values:

>>> list(irange(0.0, 1.0, 0.5))
[0.0, 0.5]

Also unlike the built-in range, both start and stop have to be specified:

>>> irange(42)
Traceback (most recent call last):
...

TypeError: irange() takes at least 2 arguments (1 given)

Of course, a null step is not allowed:

>>> list(irange(1, 2, 0))
Traceback (most recent call last):
...

AssertionError: Null step in irange.

gc3libs.utils.lock(path, timeout, create=True)
Lock the file at path. Raise a LockTimeout error if the lock cannot be acquired within timeout seconds.

Return a lock object that should be passed unchanged to the gc3libs.utils.unlock function.

If no path points to a non-existent location, an empty file is created before attempting to lock (unless create
is False). An attempt is made to remove the file in case an error happens.

See also: gc3libs.utils.unlock()

gc3libs.utils.mkdir(path, mode=511)
Like os.makedirs, but does not throw an exception if PATH already exists.

gc3libs.utils.mkdir_with_backup(path, mode=511)
Like os.makedirs, but if path already exists and is not empty, rename the existing one to a backup name (see
the backup function).

Unlike os.makedirs, no exception is thrown if the directory already exists and is empty, but the target direc-
tory permissions are not altered to reflect mode.

gc3libs.utils.move_recursively(src, dst, overwrite=False, changed_only=True)
Move src to dst, descending it recursively if necessary.

The overwrite and changed_only optional arguments have the same effect as in copytree() (which see).

gc3libs.utils.movefile(src, dst, overwrite=False, changed_only=True, link=False)
Move a file from src to dst; return True if the move was actually made.

The overwrite and changed_only optional arguments have the same effect as in copyfile() (which see).

If dst is a directory, a file with the same basename as src is created (or overwritten) in the directory specified.

Return True or False, depending on whether the source file was actually moved to the destination.

See also: copyfile()

gc3libs.utils.movetree(src, dst, overwrite=False, changed_only=True)
Recursively move an entire directory tree rooted at src.

The overwrite and changed_only optional arguments have the same effect as in copytree() (which see).

See also: copytree().

gc3libs.utils.occurs(pattern, filename)
Return True if any line in filename matches regular expression pattern.

gc3libs.utils.prettyprint(D, indent=0, width=0, maxdepth=None, step=4, only_keys=None,
output=<open file ‘<stdout>’, mode ‘w’>, _key_prefix=’‘, _ex-
clude=None)

Print dictionary instance D in a YAML-like format. Each output line consists of:

2.2. Programmer Documentation 137

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

•indent spaces,

•the key name,

•a colon character :,

•the associated value.

If the total line length exceeds width, the value is printed on the next line, indented by further step spaces; a
value of 0 for width disables this line wrapping.

Optional argument only_keys can be a callable that must return True when called with keys that should be
printed, or a list of key names to print.

Dictionary instances appearing as values are processed recursively (up to maxdepth nesting). Each nested
instance is printed indented step spaces from the enclosing dictionary.

gc3libs.utils.progressive_number(qty=None, id_filename=None)
Return a positive integer, whose value is guaranteed to be monotonically increasing across different invoca-
tions of this function, and also across separate instances of the calling program.

This is accomplished by using a system-wide file which holds the “next available” ID. The location of
this file can be set using the GC3PIE_ID_FILE environment variable, or programmatically using the
id_filename argument. By default, the “next ID” file is located at ~/.gc3/next_id.txt:file:

Example:

>>> # create "next ID" file in a temporary location
>>> import tempfile, os
>>> (fd, tmp) = tempfile.mkstemp()

>>> n = progressive_number(id_filename=tmp)
>>> m = progressive_number(id_filename=tmp)
>>> m > n
True

If you specify a positive integer as argument, then a list of monotonically increasing numbers is returned.
For example:

>>> ls = progressive_number(5, id_filename=tmp)
>>> len(ls)
5

(clean up test environment)

>>> os.remove(tmp)

In other words, progressive_number(N) is equivalent to:

nums = [progressive_number() for n in range(N)]

only more efficient, because it has to obtain and release the lock only once.

After every invocation of this function, the last returned number is stored into the file passed as argument
id_filename. If the file does not exist, an attempt to create it is made before allocating an id; the method can
raise an IOError or OSError if id_filename cannot be opened for writing.

Note: as file-level locking is used to serialize access to the counter file, this function may block (default
timeout: 30 seconds) while trying to acquire the lock, or raise a LockTimeout exception if this fails.

Raise LockTimeout, IOError, OSError

Returns A positive integer number, monotonically increasing with every call. A list of such
numbers if argument qty is a positive integer.

gc3libs.utils.read_contents(path)
Return the whole contents of the file at path as a single string.

138 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Example:

>>> read_contents('/dev/null')
''

>>> import tempfile
>>> (fd, tmpfile) = tempfile.mkstemp()
>>> w = open(tmpfile, 'w')
>>> w.write('hey')
>>> w.close()
>>> read_contents(tmpfile)
'hey'

(If you run this test, remember to do cleanup afterwards)

>>> os.remove(tmpfile)

gc3libs.utils.safe_repr(obj)
Return a string describing Python object obj.

Avoids calling any Python magic methods, so should be safe to use as a ‘last resort’ in implementation of
__str__ and __repr__.

gc3libs.utils.same_docstring_as(referenced_fn)
Function decorator: sets the docstring of the following function to the one of referenced_fn.

Intended usage is for setting docstrings on methods redefined in derived classes, so that they inherit the
docstring from the corresponding abstract method in the base class.

gc3libs.utils.samefile(path1, path2)
Like os.path.samefile but return False if either one of the paths does not exist.

gc3libs.utils.sh_quote_safe(text)
Escape a string for safely passing as argument to a shell command.

Return a single-quoted string that expands to the exact literal contents of text when used as an argument to
a shell command. Examples (note that backslashes are doubled because of Python’s string read syntax):

>>> print(sh_quote_safe("arg"))
'arg'
>>> print(sh_quote_safe("'arg'"))
''\''arg'\'''

gc3libs.utils.sh_quote_safe_cmdline(args)
Single-quote a list of strings for passing to the shell as a command. Return the list of quoted arguments
concatenated and separated by spaces.

Examples:

>>> sh_quote_safe_cmdline(['sh', '-c', 'echo c(1,2,3)'])
"'sh' '-c' 'echo c(1,2,3)'"

gc3libs.utils.sh_quote_unsafe(text)
Double-quote a string for passing as argument to a shell command.

Return a double-quoted string that expands to the contents of text but still allows variable expansion and
\-escapes processing by the UNIX shell. Examples (note that backslashes are doubled because of Python’s
string read syntax):

>>> print(sh_quote_unsafe("arg"))
"arg"
>>> print(sh_quote_unsafe('"arg"'))
"\"arg\""
>>> print(sh_quote_unsafe(r'"\"arg\""'))
"\"\\\"arg\\\"\""

2.2. Programmer Documentation 139

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.utils.sh_quote_unsafe_cmdline(args)
Double-quote a list of strings for passing to the shell as a command. Return the list of quoted arguments
concatenated and separated by spaces.

Examples:

>>> sh_quote_unsafe_cmdline(['sh', '-c', 'echo $HOME'])
'"sh" "-c" "echo $HOME"'

gc3libs.utils.string_to_boolean(word)
Convert word to a Python boolean value and return it. The strings true, yes, on, 1 (with any capitalization
and any amount of leading and trailing spaces) are recognized as meaning Python True:

>>> string_to_boolean('yes')
True
>>> string_to_boolean('Yes')
True
>>> string_to_boolean('YES')
True
>>> string_to_boolean(' 1 ')
True
>>> string_to_boolean('True')
True
>>> string_to_boolean('on')
True

Any other word is considered as boolean False:

>>> string_to_boolean('no')
False
>>> string_to_boolean('No')
False
>>> string_to_boolean('Nay!')
False
>>> string_to_boolean('woo-hoo')
False

This includes also the empty string and whitespace-only:

>>> string_to_boolean('')
False
>>> string_to_boolean(' ')
False

gc3libs.utils.stripped(iterable)
Iterate over lines in iterable and return each of them stripped of leading and trailing blanks.

gc3libs.utils.tempdir(*args, **kwds)
A context manager for creating and then deleting a temporary directory.

All arguments are passed unchanged to the tempfile.mkdtemp standand library function.

(Original source and credits: http://stackoverflow.com/a/10965572/459543)

gc3libs.utils.test_file(path, mode, exception=<type ‘exceptions.RuntimeError’>, is-
dir=False)

Test for access to a path; if access is not granted, raise an instance of exception with an appropriate error
message. This is a frontend to os.access(), which see for exact semantics and the meaning of path and
mode.

Parameters

• path – Filesystem path to test.

• mode – See os.access()

• exception – Class of exception to raise if test fails.

140 Chapter 2. Table of Contents

http://stackoverflow.com/a/10965572/459543

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• isdir – If True then also test that path points to a directory.

If the test succeeds, True is returned:

>>> test_file('/bin/cat', os.F_OK)
True
>>> test_file('/bin/cat', os.R_OK)
True
>>> test_file('/bin/cat', os.X_OK)
True
>>> test_file('/tmp', os.X_OK)
True

However, if the test fails, then an exception is raised:

>>> test_file('/bin/cat', os.W_OK)
Traceback (most recent call last):
...

RuntimeError: Cannot write to file '/bin/cat'.

If the optional argument isdir is True, then additionally test that path points to a directory inode:

>>> test_file('/tmp', os.F_OK, isdir=True)
True

>>> test_file('/bin/cat', os.F_OK, isdir=True)
Traceback (most recent call last):
...

RuntimeError: Expected '/bin/cat' to be a directory, but it's not.

gc3libs.utils.to_bytes(s)
Convert string s to an integer number of bytes. Suffixes like ‘KB’, ‘MB’, ‘GB’ (up to ‘YB’), with or without
the trailing ‘B’, are allowed and properly accounted for. Case is ignored in suffixes.

Examples:

>>> to_bytes('12')
12
>>> to_bytes('12B')
12
>>> to_bytes('12KB')
12000
>>> to_bytes('1G')
1000000000

Binary units ‘KiB’, ‘MiB’ etc. are also accepted:

>>> to_bytes('1KiB')
1024
>>> to_bytes('1MiB')
1048576

gc3libs.utils.touch(path)
Ensure a regular file exists at path.

If the file already exists, its access and modification time are updated.

(This is a very limited and stripped down version of the touch POSIX utility.)

gc3libs.utils.uniq(seq)
Iterate over all unique elements in sequence seq.

Distinct values are returned in a sorted fashion.

Examples:

2.2. Programmer Documentation 141

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

>>> for value in uniq([4,1,1,2,3,1,2]): print value
...
1
2
3
4

>>> for value in uniq([1,2,3,4]): print value
...
1
2
3
4

>>> for value in uniq([1,1,1,1]): print value
...
1

gc3libs.utils.unlock(lock)
Release a previously-acquired lock.

Argument lock should be the return value of a previous gc3libs.utils.lock call.

See also: gc3libs.utils.lock()

gc3libs.utils.update_parameter_in_file(path, var_in, new_val, regex_in)
Updates a parameter value in a parameter file using predefined regular expressions in _loop_regexps.

Parameters

• path – Full path to the parameter file.

• var_in – The variable to modify.

• new_val – The updated parameter value.

• regex – Name of the regular expression that describes the format of the parameter file.

gc3libs.utils.write_contents(path, data)
Overwrite the contents of the file at path with the given data. If the file does not exist, it is created.

Example:

>>> import tempfile
>>> (fd, tmpfile) = tempfile.mkstemp()
>>> write_contents(tmpfile, 'big data here')
>>> read_contents(tmpfile)
'big data here'

(If you run this test, remember to clean up afterwards)

>>> os.remove(tmpfile)

gc3libs.workflow

Implementation of task collections.

Tasks can be grouped into collections, which are tasks themselves, therefore can be controlled
(started/stopped/cancelled) like a single whole. Collection classes provided in this module implement the ba-
sic patterns of job group execution; they can be combined to form more complex workflows. Hook methods are
provided so that derived classes can implement problem-specific job control policies.

class gc3libs.workflow.AbortOnError
Mix-in class to make a SequentialTaskCollection turn to TERMINATED state as soon as one of
the tasks fail.

142 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

A second effect of mixing this class in is that the self.execution.returncode mirrors the return code of the
last finished task.

class gc3libs.workflow.DependentTaskCollection(tasks=None, **extra_args)
Run a set of tasks, respecting inter-dependencies between them.

Each task can list a number of tasks that need to be run before it; upon submission, a DependentTaskCollec-
tion creates a direct acyclic graph from that dependency information and ensures that no task is run before
its dependencies have been successfully executed.

The collection state is set to TERMINATED once all tasks have reached the same terminal status.

add(task, after=None)
Add a task to the collection.

The task will be run after any tasks referenced in the after sequence have terminated their run. Alter-
natively, a task can list tasks it depends upon in its .after attribute; i.e., the following two syntaxes
are equivalent:

>>> coll.add(task1, after=[task2])

>>> task1.after = [task2]
>>> coll.add(task1)

Note: tasks can only be added to a DependentTaskCollection while it’s in state NEW.

class gc3libs.workflow.ParallelTaskCollection(tasks=None, **extra_args)
A ParallelTaskCollection runs all of its tasks concurrently.

The collection state is set to TERMINATED once all tasks have reached the same terminal status.

add(task)
Add a task to the collection.

attach(controller)
Use the given Controller interface for operations on the job associated with this task.

kill(**extra_args)
Terminate all tasks in the collection, and set collection state to TERMINATED.

progress()
Try to advance all jobs in the collection to the next state in a normal lifecycle. Return list of task
execution states.

submit(resubmit=False, targets=None, **extra_args)
Start all tasks in the collection.

update_state(**extra_args)
Update state of all tasks in the collection.

class gc3libs.workflow.RetryableTask(task, max_retries=0, **extra_args)
Wrap a Task instance and re-submit it until a specified termination condition is met.

By default, the re-submission upon failure happens iff execution terminated with nonzero return code; the
failed task is retried up to self.max_retries times (indefinitely if self.max_retries is 0).

Override the retry method to implement a different retryal policy.

Note: The resubmission code is implemented in the terminated(), so be sure to call it if you override
in derived classes.

changed
Evaluates to True if this task or any of its subtasks has been modified and should be saved to persistent
storage.

retry()
Return True or False, depending on whether the failed task should be re-submitted or not.

2.2. Programmer Documentation 143

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

The default behavior is to retry a task iff its execution terminated with nonzero returncode and the
maximum retry limit has not been reached. If self.max_retries is 0, then the dependent task is retried
indefinitely.

Override this method in subclasses to implement a different policy.

update_state()
Update the state of the dependent task, then resubmit it if it’s TERMINATED and self.retry() is True.

class gc3libs.workflow.SequentialTaskCollection(tasks, **extra_args)
A SequentialTaskCollection runs its tasks one at a time.

After a task has completed, the next method is called with the index of the finished task in the self.tasks
list; the return value of the next method is then made the collection execution.state. If the returned state is
RUNNING, then the subsequent task is started, otherwise no action is performed.

The default next implementation just runs the tasks in the order they were given to the constructor, and sets
the state to TERMINATED when all tasks have been run.

attach(controller)
Use the given Controller interface for operations on the job associated with this task.

kill(**extra_args)
Stop execution of this sequence. Kill currently-running task (if any), then set collection state to TER-
MINATED.

next(done)
Return the state or task to run when step number done is completed.

This method is called when a task is finished; the done argument contains the index number of the
just-finished task into the self.tasks list. In other words, the task that just completed is available as
self.tasks[done].

The return value from next can be either a task state (i.e., an instance of Run.State), or a valid index
number for self.tasks. In the first case:

•if the return value is Run.State.TERMINATED, then no other jobs will be run;

•otherwise, the return value is assigned to execution.state and the next job in the self.tasks list is
executed.

If instead the return value is a (nonnegative) number, then tasks in the sequence will be re-run starting
from that index.

The default implementation runs tasks in the order they were given to the constructor, and sets the
state to TERMINATED when all tasks have been run. This method can (and should) be overridden in
derived classes to implement policies for serial job execution.

submit(resubmit=False, targets=None, **extra_args)
Start the current task in the collection.

update_state(**extra_args)
Update state of the collection, based on the jobs’ statuses.

class gc3libs.workflow.StagedTaskCollection(**extra_args)
Simplified interface for creating a sequence of Tasks. This can be used when the number of Tasks to run is
fixed and known at program writing time.

A StagedTaskCollection subclass should define methods stage0, stage1, ... up to stageN (for some arbitrary
value of N positive integer). Each of these stageN must return a Task instance; the task returned by the
stage0 method will be executed first, followed by the task returned by stage1, and so on. The sequence stops
at the first N such that stageN is not defined.

The exit status of the whole sequence is the exit status of the last Task instance run. However, if any of the
stageX methods returns an integer value instead of a Task instance, then the sequence stops and that number
is used as the sequence exit code.

144 Chapter 2. Table of Contents

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

class gc3libs.workflow.StopOnError
Mix-in class to make a SequentialTaskCollection turn to STOPPED state as soon as one of the
tasks fail.

A second effect of mixing this class in is that the self.execution.returncode mirrors the return code of the
last finished task.

class gc3libs.workflow.TaskCollection(tasks=None, **extra_args)
Base class for all task collections. A “task collection” is a group of tasks, that can be managed collectively
as a single one.

A task collection implements the same interface as the Task class, so you can use a TaskCollection every-
where a Task is required. A task collection has a state attribute, which is an instance of gc3libs.Run.State;
each concrete collection class decides how to deduce a collective state based on the individual task states.

add(task)
Add a task to the collection.

attach(controller)
Use the given Controller interface for operations on the job associated with this task.

changed
Evaluates to True if this task or any of its subtasks has been modified and should be saved to persistent
storage.

free()
This method just asks the Engine to free the contained tasks.

iter_tasks()
Iterate over non-collection tasks enclosed in this collection.

iter_workflow()
Returns an iterator that will traverse the whole tree of tasks.

peek(what, offset=0, size=None, **extra_args)
Raise a gc3libs.exceptions.InvalidOperation error, as there is no meaningful semantics that can be
defined for peek into a generic collection of tasks.

remove(task)
Remove a task from the collection.

stats(only=None)
Return a dictionary mapping each state name into the count of tasks in that state. In addition, the
following keys are defined:

•ok: count of TERMINATED tasks with return code 0

•failed: count of TERMINATED tasks with nonzero return code

•total: count of managed tasks, whatever their state

If the optional argument only is not None, tasks whose class is not contained in only are ignored.

Parameters only (tuple) – Restrict counting to tasks of these classes.

terminated()
Called when the job state transitions to TERMINATED, i.e., the job has finished execution (with what-
ever exit status, see returncode) and the final output has been retrieved.

Default implementation for TaskCollection is to set the exitcode to the maximum of the exit codes of
its tasks. If no tasks were run, the exitcode is set to 0.

update_state(**extra_args)
Update the running state of all managed tasks.

2.2. Programmer Documentation 145

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3utils

gc3utils.commands

gc3utils.frontend

This is the main entry point for command gc3utils – a simple command-line frontend to distributed resources

This is a generic front-end code; actual implementation of commands can be found in gc3utils.commands

gc3utils.frontend.main()
Generic front-end function to invoke the commands in gc3utils/commands.py

2.3 Developer Documentation

This section contains all information needed for people who wants to contribute to GC3Pie.

2.3.1 Contributing to GC3Pie

First of all, thanks for wanting to contribute to GC3Pie! GC3Pie is an open-ended endeavour, and we’re always
looking for new ideas, suggestions, and new code. (And also, for fixes to bugs old and new ;-))

The paragraphs below should brief you about the organization of the GC3Pie code repositories, and the suggested
guidelines for code and documentation style. Feel free to request more info or discuss the existing recommenda-
tions on the GC3Pie mailing list

Code repository organization

GC3Pie code is hosted in a Google Code repository, which you can access online or using any Subversion client.
Refer to the checkout instructions to grab a copy of the sources.

Please note that anyone can read the sources, but you need to be granted committer status before you can make any
modifications into the code; read section how can I get access to the SVN repository? below to request write-access
to the repository.

Repository structure

The GC3Pie code repository follows the standard subversion layout:

• trunk is the place for development code: it has all the latest and greatest features, and also the newest and
nastiest bugs.

• tags is where released code is: each subdirectory of tags is a snapshot of a release of GC3Pie code, and
should never change.

• branches are alternative development lines, for instance code from past releases that still gets bugfixes,
or experimental features that have not been implemented in the main development line trunk (because,
e.g., they require a radical API change).

We shall now describe the contents of the trunk directory, as there is where most new code will land. Organiza-
tion of the code in tags and branches is very similar and you should be able to adapt easily.

The gc3pie directory in trunk contains all GC3Pie code. It has one subdirectory for each of the main parts of
GC3Pie:

• The gc3libs directory contains the GC3Libs code, which is the core of GC3Pie. GC3Libs are extensively
described in the API section of this document; read the module descriptions to find out where your new
suggested functionality would suit best. If unsure, ask on the GC3Pie mailing list.

146 Chapter 2. Table of Contents

mailto:gc3pie@googlegroups.com
http://code.google.com/
http://code.google.com/p/gc3pie/source/browse
http://subversion.apache.org/
http://code.google.com/p/gc3pie/source/checkout
http://stackoverflow.com/a/109009/459543
mailto:gc3pie@googlegroups.com

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• The gc3utils directory contains the sources for the low-level GC3Utils command-line utilities.

• The gc3apps directory contains the sources for higher level scripts that implement some computational
use case of independent interest.

The gc3apps directory contains one subdirectory per application script. Actually, each subdirectory can
contain one or more Python scripts, as long as they form a coherent bundle; for instance, Rosetta is a suite of
applications in computational biology: there are different GC3Apps script corresponding to different uses
of the Rosetta suite, all of them grouped into the rosetta subdirectory.

Subdirectories of the gc3apps directory follow this naming convention:

– the directory name is the main application name, if the application that the scripts wrap is a known,
publicly-released computational application (e.g., Rosetta, GAMESS)

– the directory name is the requestor’s name, if the application that the scripts wrap is some research
code that is being internally developed. For instance, the bf.uzh.ch directory contains scripts that
wrap code for economic simulations that is being developed at the Banking and Finance Institute of
the University of Zurich

How can I get access to the SVN repository?

Please send an email to <gc3pie-dev@googlegroups.com>. Note that, in order to access the GC3Pie source
repository you will need a Google Account, so sending the request email from a Gmail address might be a good
idea.

Package generation

Due to issue 329, we don’t use the automatic discovery feature of setuptools, so the files included in the
distributed packages are those in the MANIFEST.in file, please check The MANIFEST.in template section of
the python documentation for a syntax reference. We usually include only code, documentation, and related
files. We also include the regression tests, but we do not include the application tests in gc3apps/*/test
directories.

Testing the code

In developing GC3Pie we try to use a Test Driven Development approach, in the light of the quote: It’s tested or
it’s broken. We use tox and nose as test runners, which make creating tests very easy.

Running the tests

You can both run tests on your current environment using nosetests or use tox_ to create and run tests on separate
environments. We suggest you to use nosetests while you are still fixing the problem, in order to be able to run
only the failing test, but we strongly suggest you to run tox before committing your code.

Running tests with nosetests In order to have the nosetests program, you need to install nose_ in your current
environment and gc3pie must be installed in develop mode:

pip install nose
python setup.py develop

Then, from the top level directory, run the tests with:

nose -c nose.cfg

Nose will then crawl the directory tree looking for available tests. You can also specify a subset of the available
sets, by:

2.3. Developer Documentation 147

http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.rosettacommons.org/
http://www.msg.ameslab.gov/gamess/
http://www.bf.uzh.ch/
http://www.bf.uzh.ch/
mailto:gc3pie-dev@googlegroups.com
http://code.google.com/p/gc3pie/
http://code.google.com/p/gc3pie/
http://www.google.com/accounts
http://gmail.com/
http://code.google.com/p/gc3pie/issues/detail?id=329
http://docs.python.org/distutils/sourcedist.html#the-manifest-in-template
http://en.wikipedia.org/wiki/Test-driven_development
http://tox.testrun.org/latest/
http://readthedocs.org/docs/nose/en/latest/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• specifying the directory from which nose should start looking for tests:

Run only backend-related tests
nose -c nose.cfg gc3libs/backends

• specifying the file containing the tests you want to run:

Run only tests contained in a specific file
nose -c nose.cfg gc3libs/tests/test_session.py

• specifying the id of the test (you need to run nose at least one to know which id is assigned to each test):

Run only test number 123
nose -c nose.cfg 123

Running multiple tests In order to test GC3Pie against multiple version of python we use tox, which creates
virtual environments for all configured python version, runs nose inside each one of them, and prints a summary
of the test results.

You don’t need to have tox installed in the virtual environment you use to develop gc3pie, you can create a new
virtual environment and install tox on it with:

pip install tox

Running tox is straightforward; just type tox on the command-line in GC3Pie’s top level source directory.

The default tox.ini file shipped with GC3Pie attempts to test all Python versions from 2.4 to 2.7 (inclusive). If
you want to run tests only for a specific version of python, for instance Python 2.6, use the -e option:

tox -e py26
[...]
Ran 118 tests in 14.168s

OK (SKIP=9)
__ [tox summary] ___
[TOX] py26: commands succeeded
[TOX] congratulations :)

(See section skipping tests for a discussion about how and when to define skipped tests.)

Option -r instructs tox to re-build the testing virtual environment. This is usually needed when you update the
dependencies of GC3Pie or when you add or remove command line programs or configuration files. However, if
you feel that the environments can be unclean, you can clean up everything by:

1. deleting all the *.pyc file in your source tree:

find . -name '*.pyc' -delete

2. deleting and recreating tox virtual environments:

tox -r

Organizing tests

Each single python file should have a test file inside a tests subpackage with filename created by pre-
fixing test_ to the filename to test. For example, if you created a file foo.py, there should be a file
tests/test_foo.py which will contains tests for foo.py.

Even though following the naming convention above is not always possible, each test regarding a specific com-
ponent should be in a file inside a tests directory inside that component. For instance, tests for the subpackage
gc3libs.persistence are located inside the directory gc3libs/persistence/tests but are not named after
the specific file.

148 Chapter 2. Table of Contents

http://tox.testrun.org/latest/
http://readthedocs.org/docs/nose/en/latest/
http://tox.testrun.org/latest/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Writing tests

Please remember that it may be hard to understand, whenever a test fails, if it’s a bug in the code or in the tests!
Therefore please remember:

• Try to keep tests as simple as possible, and always simpler than the tested code. (Debugging is twice as
hard as writing the code in the first place., Brian W. Kernighan and P. J. Plauger)

• Write multiple indipendent tests to test different possible behavior and/or different methods of a class.

• Tests should cover methods and functions, but also specific use cases.

• If you are fixing a bug, it’s good practice to write a test to check if the bug is still there, in order to avoid to
re-include the bug in the future.

• Tests should clean up every temporary file they create.

Writing tests is very easy: just create a file whose name begins with test_, then put in it some functions which
name begins with test_; the nose framework will automatically call each one of them. Moreover, nose will run
also any doctest which will be found in the code.

Full documentation of the nose framework is available at the nose website. However, there are some of the
interesting features you may want to use to improve your tests, detailed in the following sections.

Testing for errors If your test must verify that the code raises an exception, instead of wrapping the test inside
a try: ... except: block you can use the @raises decorator from the nose.tools module:

from nose.tools import raises

@raises(TypeError)
def test_invalid_invocation():

Application()

This is exactly the same as writing:

try:
Application()
assert False, "we should have got an exception"

except TypeError:
pass

Skipping tests If you want to skip a test, just raise a SkipTest exception (imported from the nose.plugins.skip
module). This is useful when you know that the test will fail, either because the code is not ready yet, or because
some environmental conditions are not satisfied (e.g., an optional module is missing, or the code needs to access
a service that is not available). For example:

from nose.plugins.skip import SkipTest
try:

import MySQLdb
except ImportError:

raise SkipTest("Error importing MySQL backend. Skipping MySQL low level tests")

Generating tests It is possible to use Python generators to create multiple tests at run time:

def test_evens():
for i in range(0, 5):

yield check_even, i, i*3

def check_even(n, nn):
assert n % 2 == 0 or nn % 2 == 0

2.3. Developer Documentation 149

http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/
http://wiki.python.org/moin/DocTest
http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/
http://wiki.python.org/moin/Generators

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

This will result in five tests: nose will iterate the generator, creating a function test case wrapper for each tu-
ple it yields. Specifically, in the example above, nose will execute the function calls check_even(0,0),
check_even(1,3), ..., check_even(4,12) as if each of them were written in the source as a separate test;
if any of them fails (i.e., raises an AssertionError), then the test is considered failed.

Grouping tests into classes Tests that share the same set-up or clean-up code should be grouped into test classes:

• The exact same set-up and clean-up code (fixtures) will be run before and after each test, but is written down
only once.

• Python class inheritance can be used to run the same tests on different configurations (e.g., by just overriding
the set-up and clean-up code).

A test class is a regular Python class, whose name begins with Test (first letter must be uppercase); each method
whose name begins with test_ defines a test case.

If the class defines a setUp method, it will be called before each test method. If the class defines a tearDown
method, it will be called after each test method.

If class methods setup_class and teardown_class are defined, nose will invoke them once (before and
after performing the tests of that class, respectively).

A canonical example of a test class with fixtures looks like this:

class TestClass(object):

@classmethod
def setup_class(cls):

...

@classmethod
def teardown_class(cls):

...

def setUp(self):
...

def tearDown(self):
...

def test_case_1(self):
...

def test_case_2(self):
...

def test_case_3(self):
...

The nose framework will execute a code like this:

TestClass.setup_class()
for test_method in get_test_classes():

obj = TestClass()
obj.setUp()
try:

obj.test_method()
finally:

obj.tearDown()
TestClass.teardown_class()

That is, for each test case, a new instance of the TestClass is created, set up, and torn down – thus approximating
the Platonic ideal of running each test in a completely new, pristine environment.

150 Chapter 2. Table of Contents

http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/
http://readthedocs.org/docs/nose/en/latest/

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

Opening the python debugger while running a test

When running using nosetests:command you cannot just execute pdb.set_trace() to open a debugger console.
However, you can run the set_trace() function of the nose.tools module:

import nose.tools; nose.tools.set_trace()

Coding style

Python code should be written according to PEP 8 recommendations. (And by this we mean not just the code
style.)

Please take the time to read PEP 8 through, as it is widely-used across the Python programming community – it
will benefit your contribution to any free/open-source Python project!

Anyway, here’s a short summary for the impatient:

• use English nouns to name variables and classes; use verbs to name object methods.

• use 4 spaces to indent code; never use TABs.

• use lowercase letters for method and variable names; use underscores _ to separate words in multi-word
identifiers (e.g., lower_case_with_underscores)

• use “CamelCase” for class and exception names.

• but, above all, do not blindly follow the rules and try to do the thing that enhances code clarity and read-
ability!

Here’s other code conventions that apply to GC3Pie code; since they are not always widely followed or known, a
short rationale is given for each of them.

• Every class and function should have a docstring. Use reStructuredText markup for docstrings and docu-
mentation text files.

Rationale: A concise English description of the purpose of a function can be faster to read than the code.
Also, undocumented functions and classes do not appear in this documentation, which makes them invisible
to new users.

• Use fully-qualified names for all imported symbols; i.e., write import foo and then use foo.bar()
instead of from foo import bar. If there are few imports from a module, and the imported names
do clearly belong to another module, this rule can be relaxed if this enhances readability, but never do use
unqualified names for exceptions.

Rationale: There are so many functions and classes in GC3Pie, so it may be hard to know to which module
the function count belongs. (Think especially of people who have to bugfix a module they didn’t write in
the first place.)

• When calling methods or functions that accept both positional and optional arguments like:

def foo(a, b, key1=defvalue1, key2=defvalue2):

always specify the argument name for optional arguments, which means do not call:

foo(1, 2, value1, value2)

but call instead:

foo(1, 2, key1=value1, key2=value2)

Rationale: calling the function with explicit argument names will reduce the risk of hit some compatibility
issues. It is perfectly fine, from the point of view of the developer, to change the signature of a function
by swapping two different optional arguments, so this change can happen any time, although changing
positional arguments will break backward compatibility, and thus it’s usually well advertised and tested.

2.3. Developer Documentation 151

http://www.python.org/dev/peps/pep-0008/
http://docutils.sourceforge.net/rst.html

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• Use double quotes " to enclose strings representing messages meant for human consumption (e.g., log
messages, or strings that will be printed on the users’ terminal screen).

Rationale: The apostrophe character ’ is a normal occurrence in English text; use of the double quotes
minimizes the chances that you introduce a syntax error by terminating a string in its middle.

• Follow normal typographic conventions when writing user messages and output; prefer clarity and avoid
ambiguity, even if this makes the messages longer.

Rationale: Messages meant to be read by users will be read by users; and if they are not read by users, they
will be fired back verbatim on the mailing list on the next request for support. So they’d better be clear, or
you’ll find yourself wondering what that message was intended to mean 6 months ago.

Common typographical conventions enhance readability, and help users identify lines of readable text.

• Use single quotes ’ for strings that are meant for internal program usage (e.g., attribute names).

Rationale: To distinguish them visually from messages to the user.

• Use triple quotes """ for docstrings, even if they fit on a single line.

Rationale: Visual distinction.

• Each file should have this structure:

– the first line is the hash-bang line,

– the module docstring (explain briefly the module purpose and features),

– the copyright and licence notice,

– module imports (in the order suggested by PEP 8)

– and then the code...

Rationale: The docstring should be on top so it’s the first thing one reads when inspecting a file. The
copyright notice is just a waste of space, but we’re required by law to have it.

Documentation

The documentation can be found in gc3pie/docs. It is generated using Sphinx (http://sphinx-
doc.org/contents.html).

GC3Pie documentation is divided in three sections:

• User Documentation: info on how to install, configure and run GC3Pie applications.

• Programmer Documentation: info for programmers who want to use the GC3Pie libraries to write their own
scripts and applications.

• Developer Documentation: detailed information on how to contribute to GC3Pie and get your code included
in the main library.

The GC3Libs programming API is the most relevant part of the docs for developers contributing code and is
generated automatically from the docstrings inside the modules. Automatic documentation in Sphinx is described
under http://sphinx-doc.org/tutorial.html#autodoc. While updating the docs of existing modules is simply done by
running make html, adding documentation for a new module requires one of the following two procedures:

• Add a reference to the new module in docs/programmers/api/index.txt. Additionally, create a
file that enables automatic documentation for the module. For the module core.py, for example, auto-
matic documentation is enabled by a file docs/programmers/api/gc3libs/core.txt with the
following content:

`gc3libs.core`
==============

.. automodule:: gc3libs.core
:members:

152 Chapter 2. Table of Contents

http://en.wikipedia.org/wiki/Shebang_(Unix)
https://www.python.org/dev/peps/pep-0008
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/contents.html
http://sphinx-doc.org/tutorial.html#autodoc

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

• Execute the script docs/programmers/api/makehier.sh, which automates the above. Note that
the makehier.sh script will re-create all .txt files for all GC3Pie modules, so check if there were some
unexpected changes (e.g., with svn status) before you commit!

Docstrings are written in reStructuredText format. To be able to cross-reference between differen objects in the
documentation, you should be familiar with Sphinx domains in general and the Python domain in particular.

Questions?

Please write to the GC3Pie mailing list; we try to do our best to answer promptly.

2.4 List of contributors to GC3Pie

This is a list of people that have contributed to GC3Pie, in any form: be it enhancements to the code or testing
out releases and new features, or simply contributing suggestions and proposing enhancements. To them all, our
gratitude for trying to make GC3Pie a better tool.

The list is sorted by last name. Please send an email to <gc3pie-dev@googlegroups.com> for corrections.

• Tyanko Aleksiev <tyanko.alexiev@gmail.com>

• Niko Ehrenfeuchter <nikolaus.ehrenfeuchter@unibas.ch>

• Benjamin Jonen <benjamin.jonen@gmail.com>

• Sergio Maffioletti <sergio.maffioletti@gc3.uzh.ch>

• Antonio Messina <arcimboldo@gmail.com>

• Mark Monroe <markjmonroe@yahoo.com>

• Riccardo Murri <riccardo.murri@gmail.com>

• Michael Packard <mrghort@gmail.com>

• Xin Zhou <xin.zhou1983@gmail.com>

2.5 Glossary

API Acronym of Application Programming Interface. An API is a description of the
way one piece of software asks another program to perform a service (quoted from:
http://www.computerworld.com/s/article/43487/Application_Programming_Interface which see for a
more detailed explanation).

Command-line The sequence of words typed at the terminal prompt in order to run a specified application.

Command-line option Arguments to a command (i.e., words on the command line) that select variants to the
usual behavior of the command. For instance, a command-line option can request more verbose reporting.

Traditionally, UNIX command-line options consist of a dash (-), followed by one or more lowercase letters,
or a double-dash (--) followed by a complete word or compound word.

For example, the words -h or --help usually instruct a command to print a short usage message and exit
immediately after.

Core A single computing unit. This was called a CPU until manufacturers started packing many processing units
into a single package: now the term CPU is used for the package, and core is one of the several independent
processing units within the package.

CPU Time The total time that computing units (processor core) are actively executing a job. For single-threaded
jobs, this is normally less then the actual duration (‘wall-clock time’ or walltime), because some time is lost
in I/O and system operations. For parallel jobs the CPU time is normally larger than the duration, because

2.4. List of contributors to GC3Pie 153

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/domains.html#the-python-domain
http://sphinx-doc.org/domains.html#cross-referencing-python-objects
mailto:gc3pie@googlegroups.com
mailto:tyanko.alexiev@gmail.com
mailto:nikolaus.ehrenfeuchter@unibas.ch
mailto:benjamin.jonen@gmail.com
mailto:sergio.maffioletti@gc3.uzh.ch
mailto:arcimboldo@gmail.com
mailto:markjmonroe@yahoo.com
mailto:riccardo.murri@gmail.com
mailto:mrghort@gmail.com
mailto:xin.zhou1983@gmail.com
http://www.computerworld.com/s/article/43487/Application_Programming_Interface

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

several processor cores are active on the job at the same time; the quotient of the CPU time and the duration
measures the efficiency of the parallel job.

Job A computational job is a single run of a non-interactive application. The prototypical example is a run of
GAMESS on a single input file.

Persistent Used in the sense of preserved across program stops and system reboots. In practice, it just means
that the relevant data is stored on disk or in some database.

Resource Short for computational resource: any cluster or Grid where a job can run.

State A one-word indication of a computational job execution status (e.g., RUNNING or TERMINATED). The
terms state and status are used interchangeably in GC3Pie documentation.

STDERR Abbreviation for “standard error stream”; it is the sequence of all text messages that a command prints
to inform the user of problems or to report on operations progress. The Linux/UNIX system allows two
separate output streams, one for output proper, named STDOUT , and STDERR for “error messages”. It is
entirely up to the command to tag a message as “standard output” or “standard error”.

STDOUT Abbreviation for “standard output stream”. It is the sequence of all characters that constitute the output
of a command. The Linux/UNIX system allows two separate output streams, one for output proper, and one
for “error messages”, dubbed STDERR. It is entirely up to the command to tag a message as “standard
output” or “standard error”.

Session A persistent collection of GC3Pie tasks and jobs. Sessions are used by The GC3Apps software to store
job status across program runs.

Walltime Short for wall-clock time: indicates the total running time of a job.

154 Chapter 2. Table of Contents

http://www.msg.ameslab.gov/gamess/
http://gc3pie.googlecode.com/

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

155

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

156 Chapter 3. Indices and tables

Python Module Index

g
gc3libs, 68
gc3libs.application, 78
gc3libs.application.apppot, 79
gc3libs.application.codeml, 79
gc3libs.application.demo, 80
gc3libs.application.gamess, 80
gc3libs.application.rosetta, 80
gc3libs.application.turbomole, 81
gc3libs.authentication, 82
gc3libs.authentication.ssh, 83
gc3libs.backends, 83
gc3libs.backends.batch, 85
gc3libs.backends.lsf, 86
gc3libs.backends.pbs, 87
gc3libs.backends.sge, 87
gc3libs.backends.shellcmd, 88
gc3libs.backends.slurm, 90
gc3libs.backends.transport, 90
gc3libs.cmdline, 90
gc3libs.config, 95
gc3libs.core, 97
gc3libs.debug, 102
gc3libs.exceptions, 103
gc3libs.optimizer, 105
gc3libs.optimizer.dif_evolution, 107
gc3libs.optimizer.drivers, 109
gc3libs.optimizer.extra, 110
gc3libs.persistence, 111
gc3libs.persistence.accessors, 112
gc3libs.persistence.filesystem, 115
gc3libs.persistence.idfactory, 116
gc3libs.persistence.serialization, 116
gc3libs.persistence.sql, 116
gc3libs.persistence.store, 118
gc3libs.quantity, 119
gc3libs.session, 123
gc3libs.template, 126
gc3libs.url, 128
gc3libs.utils, 131
gc3libs.workflow, 142
gc3utils, 146
gc3utils.frontend, 146

157

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

158 Python Module Index

Index

A
AbortOnError (class in gc3libs.workflow), 142
add() (gc3libs.core.Core method), 97
add() (gc3libs.core.Engine method), 100
add() (gc3libs.session.Session method), 125
add() (gc3libs.workflow.DependentTaskCollection

method), 143
add() (gc3libs.workflow.ParallelTaskCollection

method), 143
add() (gc3libs.workflow.TaskCollection method), 145
add_params() (gc3libs.authentication.Auth method), 82
adjoin() (gc3libs.url.Url method), 129
after_main_loop() (gc3libs.cmdline.SessionBasedScript

method), 92
API, 153
append() (gc3libs.utils.History method), 132
Application (class in gc3libs), 70
application_name (gc3libs.Application attribute), 71
ApplicationDescriptionError, 103
AppPotApplication (class in

gc3libs.application.apppot), 79
attach() (gc3libs.Task method), 76
attach() (gc3libs.workflow.ParallelTaskCollection

method), 143
attach() (gc3libs.workflow.SequentialTaskCollection

method), 144
attach() (gc3libs.workflow.TaskCollection method),

145
Auth (class in gc3libs.authentication), 82
auth_factory (gc3libs.config.Configuration attribute),

96
authenticated() (gc3libs.backends.LRMS static

method), 83
AuthError, 103
aux_files() (gc3libs.application.codeml.CodemlApplication

static method), 79
AuxiliaryCommandError, 103

B
backup() (in module gc3libs.utils), 134
basename_sans() (in module gc3libs.utils), 134
BatchSystem (class in gc3libs.backends.batch), 85
before_main_loop() (gc3libs.cmdline.SessionBasedScript

method), 92

bsub() (gc3libs.Application method), 72

C
cache_for() (in module gc3libs.utils), 134
cancel_job() (gc3libs.backends.batch.BatchSystem

method), 85
cancel_job() (gc3libs.backends.LRMS method), 84
cancel_job() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 89
cat() (in module gc3libs.utils), 135
changed (gc3libs.workflow.RetryableTask attribute),

143
changed (gc3libs.workflow.TaskCollection attribute),

145
close() (gc3libs.backends.batch.BatchSystem method),

85
close() (gc3libs.backends.LRMS method), 84
close() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 89
close() (gc3libs.core.Core method), 97
close() (gc3libs.core.Engine method), 100
cmdline() (gc3libs.Application method), 72
CodemlApplication (class in

gc3libs.application.codeml), 79
Command-line, 153
Command-line option, 153
compatible_resources() (gc3libs.Application method),

72
compute_nr_of_slots() (in module

gc3libs.backends.sge), 87
ComputeTargetVals (class in gc3libs.optimizer.drivers),

109
Configuration (class in gc3libs.config), 95
ConfigurationError, 103
ConfigurationFileError, 103
configure_logger() (in module gc3libs), 78
copy() (gc3libs.utils.Struct method), 134
copy_recursively() (in module gc3libs.utils), 135
CopyError, 103
copyfile() (in module gc3libs.utils), 135
copytree() (in module gc3libs.utils), 135
Core, 153
Core (class in gc3libs.core), 97
count() (in module gc3libs.utils), 135
count_jobs() (in module gc3libs.backends.pbs), 87

159

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

count_jobs() (in module gc3libs.backends.sge), 88
count_jobs() (in module gc3libs.backends.slurm), 90
CPU Time, 153
create_engine() (in module gc3libs), 78

D
DataStagingError, 103
de_opt() (gc3libs.optimizer.drivers.SequentialDriver

method), 110
Default (class in gc3libs), 73
defproperty() (in module gc3libs.utils), 135
DependentTaskCollection (class in gc3libs.workflow),

143
deploy_configuration_file() (in module gc3libs.utils),

135
destroy() (gc3libs.session.Session method), 125
detach() (gc3libs.Task method), 76
DetachedFromGridError, 103
DifferentialEvolutionAlgorithm (class in

gc3libs.optimizer.dif_evolution), 107
dirname() (in module gc3libs.utils), 136
draw_population() (in module gc3libs.optimizer), 106
DuplicateEntryError, 103
Duration (class in gc3libs.quantity), 119

E
Engine (class in gc3libs.core), 99
Enum (class in gc3libs.utils), 131
Error, 103
error_ignored() (in module gc3libs), 78
every_main_loop() (gc3libs.cmdline.SessionBasedScript

method), 92
EvolutionaryAlgorithm (class in gc3libs.optimizer),

105
evolve() (gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm

method), 108
evolve() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 106
evolve_fn() (gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm

static method), 108
exitcode (gc3libs.Run attribute), 74
expansions() (gc3libs.template.Template method), 126
expansions() (in module gc3libs.template), 127
ExponentialBackoff (class in gc3libs.utils), 131

F
FatalError, 103
fetch_output() (gc3libs.Application method), 72
fetch_output() (gc3libs.core.Core method), 97
fetch_output() (gc3libs.core.Engine method), 100
fetch_output() (gc3libs.Task method), 76
fetch_output_error() (gc3libs.Application method), 72
fgrep() (in module gc3libs.utils), 136
FilesystemStore (class in gc3libs.persistence), 112
FilesystemStore (class in

gc3libs.persistence.filesystem), 115
filter() (gc3libs.core.MatchMaker method), 101
first() (in module gc3libs.utils), 136

flush() (gc3libs.session.Session method), 125
forget() (gc3libs.session.Session method), 125
format_arg_value() (in module gc3libs.debug), 102
format_message() (gc3libs.utils.History method), 132
free() (gc3libs.backends.batch.BatchSystem method),

85
free() (gc3libs.backends.LRMS method), 84
free() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 89
free() (gc3libs.core.Core method), 97
free() (gc3libs.core.Engine method), 100
free() (gc3libs.Task method), 76
free() (gc3libs.workflow.TaskCollection method), 145
free_slots (gc3libs.backends.shellcmd.ShellcmdLrms

attribute), 89
from_template() (in module gc3libs.utils), 136

G
GamessApplication (class in

gc3libs.application.gamess), 80
GamessAppPotApplication (class in

gc3libs.application.gamess), 80
gc3libs (module), 68
gc3libs.application (module), 78
gc3libs.application.apppot (module), 79
gc3libs.application.codeml (module), 79
gc3libs.application.demo (module), 80
gc3libs.application.gamess (module), 80
gc3libs.application.rosetta (module), 80
gc3libs.application.turbomole (module), 81
gc3libs.authentication (module), 82
gc3libs.authentication.ssh (module), 83
gc3libs.backends (module), 83
gc3libs.backends.batch (module), 85
gc3libs.backends.lsf (module), 86
gc3libs.backends.pbs (module), 87
gc3libs.backends.sge (module), 87
gc3libs.backends.shellcmd (module), 88
gc3libs.backends.slurm (module), 90
gc3libs.backends.transport (module), 90
gc3libs.cmdline (module), 90
gc3libs.config (module), 95
gc3libs.core (module), 97
gc3libs.debug (module), 102
gc3libs.exceptions (module), 103
gc3libs.optimizer (module), 105
gc3libs.optimizer.dif_evolution (module), 107
gc3libs.optimizer.drivers (module), 109
gc3libs.optimizer.extra (module), 110
gc3libs.persistence (module), 111
gc3libs.persistence.accessors (module), 112
gc3libs.persistence.filesystem (module), 115
gc3libs.persistence.idfactory (module), 116
gc3libs.persistence.serialization (module), 116
gc3libs.persistence.sql (module), 116
gc3libs.persistence.store (module), 118
gc3libs.quantity (module), 119
gc3libs.session (module), 123

160 Index

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

gc3libs.template (module), 126
gc3libs.url (module), 128
gc3libs.utils (module), 131
gc3libs.workflow (module), 142
gc3utils (module), 146
gc3utils.frontend (module), 146
GC3UtilsScript (class in gc3libs.cmdline), 91
generic_filename_mapping() (in module

gc3libs.backends.batch), 86
GET (in module gc3libs.persistence.accessors), 112
get() (gc3libs.authentication.Auth method), 82
get_epilogue_script() (gc3libs.backends.batch.BatchSystem

method), 85
get_jobid_from_submit_output()

(gc3libs.backends.batch.BatchSystem
method), 85

get_prologue_script() (gc3libs.backends.batch.BatchSystem
method), 85

get_resource_status() (gc3libs.backends.LRMS
method), 84

get_resource_status() (gc3libs.backends.lsf.LsfLrms
method), 87

get_resource_status() (gc3libs.backends.pbs.PbsLrms
method), 87

get_resource_status() (gc3libs.backends.sge.SgeLrms
method), 87

get_resource_status() (gc3libs.backends.shellcmd.ShellcmdLrms
method), 89

get_resource_status() (gc3libs.backends.slurm.SlurmLrms
method), 90

get_resources() (gc3libs.core.Core method), 97
get_resources() (gc3libs.core.Engine method), 100
get_results() (gc3libs.backends.batch.BatchSystem

method), 85
get_results() (gc3libs.backends.LRMS method), 84
get_results() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 89
getattr_nested() (in module gc3libs.utils), 136
GetAttributeValue (class in

gc3libs.persistence.accessors), 112
GetItemValue (class in gc3libs.persistence.accessors),

113
GetOnly (class in gc3libs.persistence.accessors), 114
GetValue (class in gc3libs.persistence.accessors), 114
grep() (in module gc3libs.utils), 136

H
has_converged() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 106
History (class in gc3libs.utils), 132

I
Id (class in gc3libs.persistence.idfactory), 116
IdFactory (class in gc3libs.persistence), 111
IdFactory (class in gc3libs.persistence.idfactory), 116
ifelse() (in module gc3libs.utils), 136
in_state() (gc3libs.Run method), 74
info (gc3libs.Run attribute), 74

input_filename_pattern
(gc3libs.cmdline.SessionBasedScript at-
tribute), 92

InputFileError, 103
InternalError, 104
InvalidArgument, 104
InvalidOperation, 104
InvalidResourceName, 104
InvalidType, 104
InvalidUsage, 104
InvalidValue, 104
irange() (in module gc3libs.utils), 136
is_class_private_name() (in module gc3libs.debug),

102
is_classmethod() (in module gc3libs.debug), 102
iter_tasks() (gc3libs.workflow.TaskCollection method),

145
iter_workflow() (gc3libs.workflow.TaskCollection

method), 145

J
Job, 154
JobIdFactory (class in gc3libs.persistence), 111
JobIdFactory (class in gc3libs.persistence.idfactory),

116

K
kill() (gc3libs.core.Core method), 98
kill() (gc3libs.core.Engine method), 100
kill() (gc3libs.Task method), 76
kill() (gc3libs.workflow.ParallelTaskCollection

method), 143
kill() (gc3libs.workflow.SequentialTaskCollection

method), 144

L
last() (gc3libs.utils.History method), 132
list() (gc3libs.persistence.filesystem.FilesystemStore

method), 115
list() (gc3libs.persistence.FilesystemStore method),

112
list() (gc3libs.persistence.sql.SqlStore method), 117
list() (gc3libs.persistence.store.Store method), 118
list_ids() (gc3libs.session.Session method), 125
list_names() (gc3libs.session.Session method), 125
load() (gc3libs.config.Configuration method), 96
load() (gc3libs.persistence.filesystem.FilesystemStore

method), 115
load() (gc3libs.persistence.FilesystemStore method),

112
load() (gc3libs.persistence.sql.SqlStore method), 117
load() (gc3libs.persistence.store.Store method), 118
load() (gc3libs.session.Session method), 125
LoadError, 104
lock() (in module gc3libs.utils), 137
log_stats() (in module gc3libs.optimizer.extra), 110
LRMS (class in gc3libs.backends), 83
LRMSSkipSubmissionToNextIteration, 104

Index 161

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

LsfLrms (class in gc3libs.backends.lsf), 86

M
main() (in module gc3utils.frontend), 146
make_auth() (gc3libs.config.Configuration method), 96
make_directory_path()

(gc3libs.cmdline.SessionBasedScript
method), 92

make_filesystemstore() (in module
gc3libs.persistence.filesystem), 116

make_resources() (gc3libs.config.Configuration
method), 96

make_sqlstore() (in module gc3libs.persistence.sql),
117

make_store() (in module gc3libs.persistence), 111
make_store() (in module gc3libs.persistence.store), 118
make_task_controller()

(gc3libs.cmdline.SessionBasedScript
method), 92

MatchMaker (class in gc3libs.core), 101
MaximumCapacityReached, 104
Memory (class in gc3libs.quantity), 121
merge_file() (gc3libs.config.Configuration method), 96
method_name() (in module gc3libs.debug), 102
mkdir() (in module gc3libs.utils), 137
mkdir_with_backup() (in module gc3libs.utils), 137
move_recursively() (in module gc3libs.utils), 137
movefile() (in module gc3libs.utils), 137
movetree() (in module gc3libs.utils), 137

N
name() (in module gc3libs.debug), 102
new() (gc3libs.persistence.IdFactory method), 111
new() (gc3libs.persistence.idfactory.IdFactory method),

116
new() (gc3libs.Task method), 76
new_tasks() (gc3libs.cmdline.SessionBasedScript

method), 92
next() (gc3libs.utils.ExponentialBackoff method), 132
next() (gc3libs.workflow.SequentialTaskCollection

method), 144
NoAccessibleConfigurationFile, 104
NoConfigurationFile, 104
NoneAuth (class in gc3libs.authentication), 83
nonnegative_int() (in module gc3libs.cmdline), 94
NoResources, 104
NoValidConfigurationFile, 104

O
occurs() (in module gc3libs.utils), 137
ONLY() (gc3libs.persistence.accessors.GetValue

method), 115
OutputNotAvailableError, 104

P
ParallelDriver (class in gc3libs.optimizer.drivers), 109
ParallelTaskCollection (class in gc3libs.workflow), 143
parse_qhost_f() (in module gc3libs.backends.sge), 88

parse_qstat_f() (in module gc3libs.backends.sge), 88
PbsLrms (class in gc3libs.backends.pbs), 87
peek() (gc3libs.backends.batch.BatchSystem method),

86
peek() (gc3libs.backends.LRMS method), 84
peek() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 89
peek() (gc3libs.core.Core method), 98
peek() (gc3libs.core.Engine method), 100
peek() (gc3libs.Task method), 77
peek() (gc3libs.workflow.TaskCollection method), 145
Persistable (class in gc3libs.persistence), 111
Persistable (class in gc3libs.persistence.store), 118
Persistent, 154
plot_population (class in gc3libs.optimizer.extra), 110
PlusInfinity (class in gc3libs.utils), 132
populate() (in module gc3libs.optimizer), 106
positive_int() (in module gc3libs.cmdline), 94
pre_run() (gc3libs.cmdline.GC3UtilsScript method), 91
pre_run() (gc3libs.cmdline.SessionBasedScript

method), 93
prettyprint() (in module gc3libs.utils), 137
print_stats() (in module gc3libs.optimizer.extra), 110
print_summary_table()

(gc3libs.cmdline.SessionBasedScript
method), 93

print_tasks_table() (gc3libs.cmdline.SessionBasedScript
method), 93

process_args() (gc3libs.cmdline.SessionBasedScript
method), 93

progress() (gc3libs.core.Engine method), 100
progress() (gc3libs.Task method), 77
progress() (gc3libs.workflow.ParallelTaskCollection

method), 143
progressive_number() (in module gc3libs.utils), 138
Python Enhancement Proposals

PEP 8, 152

Q
qsub_pbs() (gc3libs.Application method), 72
qsub_sge() (gc3libs.Application method), 72
Quantity (class in gc3libs.quantity), 123

R
rank() (gc3libs.core.MatchMaker method), 101
rank_resources() (gc3libs.Application method), 72
read_contents() (in module gc3libs.utils), 138
RecoverableDataStagingError, 104
RecoverableError, 104
register() (in module gc3libs.persistence.store), 118
remove() (gc3libs.core.Core method), 98
remove() (gc3libs.core.Engine method), 100
remove() (gc3libs.persistence.filesystem.FilesystemStore

method), 115
remove() (gc3libs.persistence.FilesystemStore

method), 112
remove() (gc3libs.persistence.sql.SqlStore method),

117

162 Index

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

remove() (gc3libs.persistence.store.Store method), 118
remove() (gc3libs.session.Session method), 125
remove() (gc3libs.workflow.TaskCollection method),

145
replace() (gc3libs.persistence.filesystem.FilesystemStore

method), 115
replace() (gc3libs.persistence.FilesystemStore method),

112
replace() (gc3libs.persistence.sql.SqlStore method),

117
replace() (gc3libs.persistence.store.Store method), 118
reserve() (gc3libs.persistence.IdFactory method), 111
reserve() (gc3libs.persistence.idfactory.IdFactory

method), 116
Resource, 154
retry() (gc3libs.workflow.RetryableTask method), 143
RetryableTask (class in gc3libs.workflow), 143
returncode (gc3libs.Run attribute), 74
RosettaApplication (class in

gc3libs.application.rosetta), 80
RosettaDockingApplication (class in

gc3libs.application.rosetta), 81
Run (class in gc3libs), 73
Run.Arch (class in gc3libs), 74
running() (gc3libs.Task method), 77

S
safe_repr() (in module gc3libs.utils), 139
same_docstring_as() (in module gc3libs.utils), 139
samefile() (in module gc3libs.utils), 139
save() (gc3libs.persistence.filesystem.FilesystemStore

method), 116
save() (gc3libs.persistence.FilesystemStore method),

112
save() (gc3libs.persistence.sql.SqlStore method), 117
save() (gc3libs.persistence.store.Store method), 118
save() (gc3libs.session.Session method), 126
save_all() (gc3libs.session.Session method), 126
sbatch() (gc3libs.Application method), 73
Scheduler (class in gc3libs.core), 101
scheduler (class in gc3libs.core), 102
select() (gc3libs.optimizer.dif_evolution.DifferentialEvolutionAlgorithm

method), 108
select() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 106
select_resource() (gc3libs.core.Core method), 98
select_resource() (gc3libs.core.Engine method), 100
SequentialDriver (class in gc3libs.optimizer.drivers),

110
SequentialTaskCollection (class in gc3libs.workflow),

144
Session, 154
Session (class in gc3libs.session), 123
SessionBasedScript (class in gc3libs.cmdline), 91
set_end_timestamp() (gc3libs.session.Session method),

126
set_start_timestamp() (gc3libs.session.Session

method), 126

setup() (gc3libs.cmdline.GC3UtilsScript method), 91
setup() (gc3libs.cmdline.SessionBasedScript method),

93
setup_args() (gc3libs.cmdline.GC3UtilsScript method),

91
setup_args() (gc3libs.cmdline.SessionBasedScript

method), 93
SgeLrms (class in gc3libs.backends.sge), 87
sh_quote_safe() (in module gc3libs.utils), 139
sh_quote_safe_cmdline() (in module gc3libs.utils), 139
sh_quote_unsafe() (in module gc3libs.utils), 139
sh_quote_unsafe_cmdline() (in module gc3libs.utils),

139
ShellcmdLrms (class in gc3libs.backends.shellcmd), 88
shellexit_to_returncode() (gc3libs.Run static method),

75
signal (gc3libs.Run attribute), 75
Singleton (class in gc3libs.utils), 133
SlurmLrms (class in gc3libs.backends.slurm), 90
sql_next_id_factory() (in module

gc3libs.persistence.sql), 117
SqlStore (class in gc3libs.persistence.sql), 116
Square (class in gc3libs.application.demo), 80
StagedTaskCollection (class in gc3libs.workflow), 144
State, 154
state (gc3libs.Run attribute), 75
stats() (gc3libs.core.Engine method), 100
stats() (gc3libs.workflow.TaskCollection method), 145
STDERR, 154
STDOUT, 154
StopOnError (class in gc3libs.workflow), 144
stopped() (gc3libs.Task method), 77
Store (class in gc3libs.persistence.store), 118
string_to_boolean() (in module gc3libs.utils), 140
stripped() (in module gc3libs.utils), 140
Struct (class in gc3libs.utils), 133
submit() (gc3libs.core.Core method), 98
submit() (gc3libs.core.Engine method), 101
submit() (gc3libs.Task method), 77
submit() (gc3libs.workflow.ParallelTaskCollection

method), 143
submit() (gc3libs.workflow.SequentialTaskCollection

method), 144
submit_error() (gc3libs.Application method), 73
submit_job() (gc3libs.backends.batch.BatchSystem

method), 86
submit_job() (gc3libs.backends.LRMS method), 84
submit_job() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 90
submitted() (gc3libs.Task method), 77
substitute() (gc3libs.template.Template method), 126

T
Task (class in gc3libs), 76
TaskCollection (class in gc3libs.workflow), 145
TaskError, 105
tempdir() (in module gc3libs.utils), 140
Template (class in gc3libs.template), 126

Index 163

gc3pie Documentation, Release 2.3.dev (SVN 𝑅𝑒𝑣𝑖𝑠𝑖𝑜𝑛)

terminated() (gc3libs.application.codeml.CodemlApplication
method), 79

terminated() (gc3libs.application.gamess.GamessApplication
method), 80

terminated() (gc3libs.application.rosetta.RosettaApplication
method), 81

terminated() (gc3libs.Task method), 77
terminated() (gc3libs.workflow.TaskCollection

method), 145
terminating() (gc3libs.Task method), 77
test_file() (in module gc3libs.utils), 140
to_bytes() (in module gc3libs.utils), 141
to_timedelta() (gc3libs.quantity.Duration method), 121
touch() (in module gc3libs.utils), 141
trace() (in module gc3libs.debug), 102
trace_class() (in module gc3libs.debug), 102
trace_instancemethod() (in module gc3libs.debug), 102
trace_module() (in module gc3libs.debug), 102
TurbomoleApplication (class in

gc3libs.application.turbomole), 81
TurbomoleDefineApplication (class in

gc3libs.application.turbomole), 81

U
UnexpectedStateError, 105
uniq() (in module gc3libs.utils), 141
unknown() (gc3libs.Task method), 77
UnknownJob, 105
UnknownJobState, 105
unlock() (in module gc3libs.utils), 142
UnrecoverableDataStagingError, 105
UnrecoverableError, 105
update_job_state() (gc3libs.backends.batch.BatchSystem

method), 86
update_job_state() (gc3libs.backends.LRMS method),

85
update_job_state() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 90
update_job_state() (gc3libs.core.Core method), 98
update_job_state() (gc3libs.core.Engine method), 101
update_job_state_error() (gc3libs.Application method),

73
update_opt_state() (gc3libs.optimizer.EvolutionaryAlgorithm

method), 106
update_parameter_in_file() (in module gc3libs.utils),

142
update_resources() (gc3libs.core.Core method), 99
update_state() (gc3libs.Task method), 78
update_state() (gc3libs.workflow.ParallelTaskCollection

method), 143
update_state() (gc3libs.workflow.RetryableTask

method), 144
update_state() (gc3libs.workflow.SequentialTaskCollection

method), 144
update_state() (gc3libs.workflow.TaskCollection

method), 145
Url (class in gc3libs.url), 128
UrlKeyDict (class in gc3libs.url), 129

UrlValueDict (class in gc3libs.url), 130

V
validate_data() (gc3libs.backends.batch.BatchSystem

method), 86
validate_data() (gc3libs.backends.LRMS method), 85
validate_data() (gc3libs.backends.shellcmd.ShellcmdLrms

method), 90

W
wait() (gc3libs.Task method), 78
wait() (gc3libs.utils.ExponentialBackoff method), 132
Walltime, 154
write_contents() (in module gc3libs.utils), 142

Y
YieldAtNext (class in gc3libs.utils), 134

164 Index

	Introduction
	Table of Contents
	User Documentation
	Programmer Documentation
	Developer Documentation
	List of contributors to GC3Pie
	Glossary

	Indices and tables
	Python Module Index

